精英家教網 > 高中數學 > 題目詳情
已知sin(30°+α)=,60°<α<150°,則cosα的值為    
【答案】分析:先利用α的范圍確定30°+α的范圍,進而利用同角三角函數的基本關系求得cos(30°+α)的值,最后利用兩角和的余弦函數求得答案.
解答:解:∵60°<α<150°,∴90°<30°+α<180°.
∵sin(30°+α)=,∴cos(30°+α)=-
∴cosα=cos[(30°+α)-30°]
=cos(30°+α)•cos30°+sin(30°+α)•sin30°
=-×+×=
故答案為:
點評:本題主要考查了同角三角函數的基本關系的運用和兩角和與差的余弦函數.考查了學生綜合運用所學知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
a
=(cosθ,1,sinθ),
b
=(sinθ,1,cosθ)
,則向量
a
+
b
a
-
b
的夾角是( 。
A、90°B、60°
C、30°D、0°

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩空間向量
a
=(2,cos θ,sin θ),
b
=(sin θ,2,cos θ),則
a
+
b
a
-
b
的夾角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法錯誤的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(考生注意:請在下面兩題中任選一題作答,如果都做,則按所做第1題評分)
(1)(坐標系與參數方程選做題)
曲線C1
x=1+cosθ
y=sinθ
(θ為參數)上的點到曲線C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t為參數)
上的點的最短距離為
1
1

(2)(幾何證明選講選做題)
如圖,已知:△ABC內接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=1,則AD的長為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(1-cosθ,1)
,
b
=(
1
2
,1+sinθ)
,且
a
b
,則銳角θ等于( 。
A、30°B、45°
C、60°D、75°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视