【題目】已知圓,直線
(1)求證:直線過定點;
(2)求直線被圓
所截得的弦長最短時
的值;
(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有
為一常數,試求所有滿足條件的點N的坐標及該常數.
【答案】(1)直線過定點
(2)
(3)在直線上存在定點
,使得
為常數
【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點A的坐標.
(Ⅱ)當AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點到直線的距離,轉化求解即可.
(Ⅲ)由題知,直線MC的方程為,假設存在定點N
滿足題意,
則設P(x,y),,得
,且
,求出λ,然后求解比值.
詳解:(Ⅰ)依題意得,
令且
,得
直線
過定點
(Ⅱ)當時,所截得弦長最短,由題知
,
,得
,
由
得
(Ⅲ)法一:由題知,直線的方程為
,假設存在定點
滿足題意,
則設,
,得
,且
整理得,
上式對任意
恒成立,
且
解得 ,說以
(舍去,與
重合),
綜上可知,在直線上存在定點
,使得
為常數
科目:高中數學 來源: 題型:
【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數,乙組記錄中有一個數據模糊,無法確認,在圖中用 表示.
(1)若乙組同學投籃命中次數的平均數比甲組同學的平均數少1,求 及乙組同學投籃命中次數的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數之和為16的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1: (t為參數,t ≠ 0),其中0 ≤ α < π,在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:
,C3:
.
(1)求C2與C3交點的直角坐標;
(2)若C1與C2相交于點A,C1與C3相交于點B,求 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的 ,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是 或
作品獲得一等獎”;
乙說:“ 作品獲得一等獎”;
丙說:“ ,
兩項作品未獲得一等獎”;
丁說:“是 作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的個數為( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分條件;
③命題“若m≤ ,則方程mx2+2x+2=0有實數根”的否命題為真命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的前n項和為Sn , 數列{bn}是等比數列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 .
(1)求數列{an}和{bn}的通項公式;
(2)令cn=anbn , 設數列{cn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, , 平面ABCD⊥平面ABFE.
(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com