精英家教網 > 高中數學 > 題目詳情

【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為4+ 的△ABC滿足sinA:sinB:sinC=( ﹣1): : ( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

【答案】C
【解析】解:因為sinA:sinB:sinC=( ﹣1): :( +1),

所以由正弦定理得,a:b:c=( ﹣1): :( +1),

又△ABC的周長為4+ ,

則a= 、b= 、c= ,

所以△ABC的面積S=

= = =

故選:C.

由題意和正弦定理求出a:b:c,結合條件求出a、b、c的值,代入公式求出△ABC的面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知角x始邊與x軸的非負半軸重合,與圓x2+y2=4相交于點A,終邊與圓x2+y2=4相交于點B,點B在x軸上的射影為C,△ABC的面積為S(x),函數y=S(x)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , a1=a,當n≥2時, =3n2an+S ,an≠0,n∈N*.
(1)求a的值;
(2)設數列{cn}的前n項和為Tn , 且cn=3n1+a5 , 求使不等式4Tn>S10成立的最小正整數n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為 (t為參數,a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(Ⅱ)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E與二面角C﹣BE﹣F都是60°.
(Ⅰ)證明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sin(π+ωx),2cosωx), =(2 sin( +ωx),cosωx),(ω>0),函數f(x)= ,其圖象上相鄰的兩個最低點之間的距離為π.
(Ⅰ)求函數f(x)的對稱中心;
(Ⅱ)在銳角△ABC中,角A、B、C的對邊分別為a、b、c,tanB= ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐P﹣ABCD的底面是一個正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中點,則異面直線BE與AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).

(1)求甲、乙兩人成績的平均數和中位數;

(2)現要從甲、乙兩人中選派一人參加比賽,從統計學的角度,你認為派哪位學生參加比較合適?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數f(x)是定義在R上的偶函數,f(x+1)為奇函數,f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區間(8,9)內滿足方f(x)程f(x)+2=f( )的實數x為 (
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视