【題目】如圖,直三棱柱中,
且
,
是棱
上的動點,
是
的中點.
(1)當是
中點時,求證:
平面
;
(2)在棱上是否存在點
,使得平面
與平面
所成銳二面角為
,若存在,求
的長,若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的圓心到直線
的距離;
(2)設圓與直線
交于點
,
,若點
的坐標為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構組織語文、數學學科能力競賽,按照一定比例淘汰后,頒發一二三等獎.現有某考場的兩科考試成績數據統計如下圖所示,其中數學科目成績為二等獎的考生有人.
(Ⅰ)求該考場考生中語文成績為一等獎的人數;
(Ⅱ)用隨機抽樣的方法從獲得數學和語文二等獎的學生中各抽取人,進行綜合素質測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數及方差并進行比較分析;
(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績為一等獎的考生中,隨機抽取
人進行訪談,求兩人兩科成績均為一等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓與圓相切,且與圓
相內切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設Q為曲線C上的一個不在軸上的動點,O為坐標原點,過點作OQ的平行線交曲線C于M,N兩個不同的點, 求△QMN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技改前,100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
,參考數值:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅是我國齊梁時代的數學家,是祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容易.”這里的“冪”指水平截面的面積.“勢”指高,這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設由橢圓所圍成的平面圖形繞
軸旋轉一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請類比以上所介紹的應用祖暅原理求球體體積的做法求這個橢球體的體積.其體積等于________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了推動數學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲、乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經過一年的教學實驗,將甲、乙兩個班學生一年來的數學成績取平均數,兩個班學生的平均成績均在,按照區間
,
,
,
,
進行分組,繪制成如下頻率分布直方圖,規定不低于80分(百分制)為優秀.
完成表格,并判斷是否有以上的把握認為“數學成績優秀與教學改革有關”;
(2)從乙班,
,
分數段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發言,記來自
發言的人數為隨機變量
,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的方程是
,曲線
的參數方程是
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.
(1)求直線與曲線
的極坐標方程;
(2)若射線與曲線
交于點
,與直線
交于點
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com