精英家教網 > 高中數學 > 題目詳情

【題目】若函數f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是(
A.
B.
C.
D.

【答案】C
【解析】解:∵函數f(x)=kax﹣ax , (a>0,a≠1)在(﹣∞,+∞)上是奇函數
則f(﹣x)+f(x)=0
即(k﹣1)(ax﹣ax)=0
則k=1
又∵函數f(x)=kax﹣ax , (a>0,a≠1)在(﹣∞,+∞)上是增函數
則a>1
則g(x)=loga(x+k)=loga(x+1)
函數圖象必過原點,且為增函數
故選C
由函數f(x)=kax﹣ax , (a>0,a≠1)在(﹣∞,+∞)上既是奇函數,又是增函數,則由復合函數的性質,我們可得k=1,a>1,由此不難判斷函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數y=log (﹣3+4x﹣x2)的單調遞增區間是(
A.(﹣∞,2)
B.(2,+∞)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ex(ax﹣1),g(x)=a(x﹣1),a∈R.
(1)討論f(x)的單調性;
(2)若有且僅有兩個整數xi(i=1,2),使得f(xi)<g(xi)成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數g(x)=mx2﹣2mx+n+1(m>0)在區間[0,3]上有最大值4,最小值0.
(1)求函數g(x)的解析式;
(2)設f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1:已知正方形ABCD的邊長是2,有一動點M從點B出發沿正方形的邊運動,路線是B→C→D→A.設點M經過的路程為x,△ABM的面積為S.

(1)求函數S=f(x)的解析式及其定義域;
(2)在圖2中畫出函數S=f(x)的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】記函數 的定義域為A,g(x)=lg[(x﹣a﹣1)(2a﹣x)](a<1)的定義域為B,求
(1)A,B;
(2)若BA,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數為自然對數的底數),, .

(1)若的極值點,且直線分別與函數的圖象交于,求兩點間的最短距離;

(2)若時,函數的圖象恒在的圖象上方,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車是指企業在校園、地鐵站點、公交站點、居民區、商業區、公共服務區等提供自行車單車共享服務,是共享經濟的一種新形態.一個共享單車企業在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:千輛)之間的關系”進行調查研究,在調查過程中進行了統計,得出相關數據見下表:

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1)(備注: ,稱為相應于點的殘差(也叫隨機誤差));

租用單車數量 (千輛)

2

3

4

5

8

每天一輛車平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放.根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

直角坐標系中,直線為參數),曲線為參數),以該直角坐標系的原點為極點, 軸的非負半軸為極軸建立極坐標系,曲線的方程為.

(1)分別求曲線的極坐標方程和曲線的直角坐標方程;

(2)設直線交曲線兩點,直線交曲線兩點,求的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视