科目: 來源: 題型:
【題目】如圖,設橢圓的左、右焦點分別為F1,F2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且
0,若過 A,Q,F2三點的圓恰好與直線
相切,過定點 M(0,2)的直線
與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線
的斜率
,在x軸上是否存在點P(
,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數
滿足
,求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:
過點
,過坐標原點
作兩條互相垂直的射線與橢圓
分別交于
,
兩點.
(1)證明:當取得最小值時,橢圓
的離心率為
.
(2)若橢圓的焦距為2,是否存在定圓與直線
總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數(AQI)的檢測數據,結果統計如表:
AQI | ||||||
空氣質量 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數 | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質量指數屬于[0,50],(50,100]的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;
(2)已知某企業每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數x的關系式為,假設該企業所在地7月與8月每天空氣質量為優、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為
.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.
(i)記該企業9月每天因空氣質量造成的經濟損失為X元,求X的分布列;
(ii)試問該企業7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數學期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,
//
,
.
(1)證明://平面BCE.
(2)設平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目: 來源: 題型:
【題目】追求人類與生存環境的和諧發展是中國特色社會主義生態文明的價值取向.為了改善空氣質量,某城市環保局隨機抽取了一年內100天的空氣質量指數()的檢測數據,結果統計如下:
空氣質量 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
天數 | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質量指數屬于,
的天數中任取3天,求這3天中空氣質量至少有2天為優的概率;
(2)已知某企業每天的經濟損失(單位:元)與空氣質量指數
的關系式為
,試估計該企業一個月(按30天計算)的經濟損失的數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com