精英家教網 > 高中物理 > 題目詳情

(1)如圖為“用DIS(位移傳感器、數據采集器、計算機)研究加速度和力的關系”的實驗裝置.實驗操作中,用鉤碼所受的重力作為小車所受外力,用DIS系統測定小車的加速度.在保持小車總質量不變的情況下,改變所掛鉤碼的數量,多次重復測量,將數據輸入計算機,得到如圖所示的a-F關系圖線.

①分析發現圖線在水平軸上有明顯的截距 (OA不為零),這是因為:
________________________________________________.
②(單選題)圖線AB段基本是一條直線,而BC段明顯偏離直線,造成此誤差的主要原因是                                                                   
A.小車與軌道之間存在摩擦            B.釋放小車之前就啟動記錄數據的程序
C.鉤碼總質量很小,遠小于小車的總質量   D.鉤碼總質量過大
(2)在測定一節干電池的電動勢和內電阻的實驗中,除備有:待測的干電池(電動勢約為1.5V,內電阻1.0Ω左右)、電流表A1(量程0—3m A,最小刻度0.1mA,內阻忽略不計)、電流表A2(量程0—0.6A,最小刻度0.02A,內阻忽略不計)、定值電阻R0(990Ω)、開關和導線若干等器材,還備有兩滑動變阻器
A. R1(0—20Ω,10 A)     B. R2(0—200Ω,l A)
①某同學發現上述器材中雖然沒有電壓表,但給出了兩個電流表,于是他設計了如圖甲所示的(a)、(b)兩個實驗電路,其中合理的是______圖所示的電路;在該電路中,為了操作方便且能準確地進行測量,滑動變阻器應選______(填寫器材前的字母代號).

②圖乙為該同學根據選出的合理的實驗電路,移動滑動變阻器,電流表A1和電流表A2分別測得多組I1和I2,并畫出I1-I2圖線,則由圖線可得被測電池的電動勢E=______V,內阻r=______Ω.

(1)①未平衡摩擦力或平衡摩擦力時軌道傾角偏。3分)②D (2分)
(2)①(b),A   (每空2分)  ②1.47,0.82       (每空2分)  

解析

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

(1)如圖所示,在“用雙縫干涉測光的波長”實驗中,光具座上放置的光學元件依次為①光源、②
濾光片
濾光片
、③
單縫
單縫
、④
雙縫
雙縫
、⑤遮光筒、⑥光屏.對于某種單色光,為增加相鄰亮紋(暗紋)間的距離,可采取
增大雙縫到光屏的距離
增大雙縫到光屏的距離
 或
減小雙縫間距離
減小雙縫間距離
的方法.
(2)本實驗的步驟有:?
①取下遮光筒左側的元件,調節光源高度,使光束能直接沿遮光筒軸線把屏照亮;?
②按合理順序在光具座上放置各光學元件,并使各元件的中心位于遮光筒的軸線上;?
③用米尺測量雙縫到屏的距離;?
④用測量頭(其讀數方法同螺旋測微器)測量數條亮紋間的距離.?
在操作步驟②時還應注意
單縫和雙縫間距5~10cm
單縫和雙縫間距5~10cm
 和
使單縫和雙縫相互平行
使單縫和雙縫相互平行
.?
(3)將測量頭的分劃板中心刻線與某亮紋中心對齊,將該亮紋定為第1條亮紋,此時手輪上的示數如圖甲所示.然后同方向轉動測量頭,使分劃板中心刻線與第6條亮紋中心對齊,記下此時圖乙中手輪上的示數
13.870
13.870
 mm,求得相鄰亮紋的間距△x為
2.310
2.310
mm.
(4)已知雙縫間距d為2.0×10-4m?,測得雙縫到屏的距離l為0.700m,由計算式λ=
d
I
△x
d
I
△x
,求得所測紅光波長為
6.6×102
6.6×102
nm.

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第十部分 磁場

第一講 基本知識介紹

《磁場》部分在奧賽考剛中的考點很少,和高考要求的區別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復合場中的運動進行了更深入的分析。

一、磁場與安培力

1、磁場

a、永磁體、電流磁場→磁現象的電本質

b、磁感強度、磁通量

c、穩恒電流的磁場

*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導體元段,在距離為r的點激發的“元磁感應強度”為dB 。矢量式d= k,(d表示導體元段的方向沿電流的方向、為導體元段到考查點的方向矢量);或用大小關系式dB = k結合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應用畢薩定律再結合矢量疊加原理,可以求解任何形狀導線在任何位置激發的磁感強度。

畢薩定律應用在“無限長”直導線的結論:B = 2k 

*畢薩定律應用在環形電流垂直中心軸線上的結論:B = 2πkI ;

*畢薩定律應用在“無限長”螺線管內部的結論:B = 2πknI 。其中n為單位長度螺線管的匝數。

2、安培力

a、對直導體,矢量式為 = I;或表達為大小關系式 F = BILsinθ再結合“左手定則”解決方向問題(θ為B與L的夾角)。

b、彎曲導體的安培力

⑴整體合力

折線導體所受安培力的合力等于連接始末端連線導體(電流不變)的的安培力。

證明:參照圖9-1,令MN段導體的安培力F1與NO段導體的安培力F2的合力為F,則F的大小為

F = 

  = BI

  = BI

關于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。

證畢。

由于連續彎曲的導體可以看成是無窮多元段直線導體的折合,所以,關于折線導體整體合力的結論也適用于彎曲導體。(說明:這個結論只適用于勻強磁場。)

⑵導體的內張力

彎曲導體在平衡或加速的情形下,均會出現內張力,具體分析時,可將導體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學方程求解。

c、勻強磁場對線圈的轉矩

如圖9-2所示,當一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉動(并自動選擇垂直B的中心軸OO′,因為質心無加速度),此瞬時的力矩為

M = BIS

幾種情形的討論——

⑴增加匝數至N ,則 M = NBIS ;

⑵轉軸平移,結論不變(證明從略);

⑶線圈形狀改變,結論不變(證明從略);

*⑷磁場平行線圈平面相對原磁場方向旋轉α角,則M = BIScosα ,如圖9-3;

證明:當α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉軸的的分量Bcosα才能產生力矩…

⑸磁場B垂直OO′軸相對線圈平面旋轉β角,則M = BIScosβ ,如圖9-4。

證明:當β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產生力矩…

說明:在默認的情況下,討論線圈的轉矩時,認為線圈的轉軸垂直磁場。如果沒有人為設定,而是讓安培力自行選定轉軸,這時的力矩稱為力偶矩。

二、洛侖茲力

1、概念與規律

a、 = q,或展開為f = qvBsinθ再結合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現。

b、能量性質

由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功。或:洛侖茲力可使帶電粒子的動量發生改變卻不能使其動能發生改變。

問題:安培力可以做功,為什么洛侖茲力不能做功?

解說:應該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現”這句話的確切含義——“宏觀體現”和“完全相等”是有區別的。我們可以分兩種情形看這個問題:(1)導體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導體運動時,粒子參與的是沿導體棒的運動v1和導體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。

很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數量級,而v2一般都在10?2m/s數量級以上,致使f1只是f的一個極小分量。)

☆如果從能量的角度看這個問題,當導體棒放在光滑的導軌上時(參看圖9-6),導體棒必獲得動能,這個動能是怎么轉化來的呢?

若先將導體棒卡住,回路中形成穩恒的電流,電流的功轉化為回路的焦耳熱。而將導體棒釋放后,導體棒受安培力加速,將形成感應電動勢(反電動勢)。動力學分析可知,導體棒的最后穩定狀態是勻速運動(感應電動勢等于電源電動勢,回路電流為零)。由于達到穩定速度前的回路電流是逐漸減小的,故在相同時間內發的焦耳熱將比導體棒被卡住時少。所以,導體棒動能的增加是以回路焦耳熱的減少為代價的。

2、僅受洛侖茲力的帶電粒子運動

a、時,勻速圓周運動,半徑r =  ,周期T = 

b、成一般夾角θ時,做等螺距螺旋運動,半徑r =  ,螺距d = 

這個結論的證明一般是將分解…(過程從略)。

☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內做圓周運動?

其實,在圖9-7中,B1平行v只是一種暫時的現象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現的。)

3、磁聚焦

a、結構:見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。

b、原理:由于控制極和共軸膜片的存在,電子進磁場的發散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。

4、回旋加速器

a、結構&原理(注意加速時間應忽略)

b、磁場與交變電場頻率的關系

因回旋周期T和交變電場周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、質譜儀

速度選擇器&粒子圓周運動,和高考要求相同。

第二講 典型例題解析

一、磁場與安培力的計算

【例題1】兩根無限長的平行直導線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導線之間且在兩導線所在平面內的、與a導線相距10cm的P點的磁感強度。

【解說】這是一個關于畢薩定律的簡單應用。解題過程從略。

【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內張力。

【解說】本題有兩種解法。

方法一:隔離一小段弧,對應圓心角θ ,則弧長L = θR 。因為θ 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视