YCY
1.在復平面內,復數 對應的點位于_____▲_______。
2.已知
,則
的值等于_____▲_______。
3.設函數
,其中向量
,則函數f(x)的最小正周期是_____▲_______。
4.已知函數
_____▲_______。
5.
,若
與
的夾角為銳角,則x的范圍是_____▲_______。
6.當
且
時,函數
的圖像恒過點
,若點
在直線
上,則
的最小值為_ _▲ __。
7.若一個底面為正三角形、側棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為_____▲_______。
8.已知向量
直線l過點
且與向量
垂直,則直線l的一般方程是_____▲_______。
9.在公差為正數的等差數列{an}中,a10+a11<0且a10a11<0,Sn是其前n項和,則使Sn取
最小值的n是_____▲_______。
10. 函數
圖象是將函數
的圖象經過怎樣的平移而得_▲_。
11.已知函數f(x)是偶函數,并且對于定義域內任意的x, 滿足f(x+2)= -
,
當3<x<4時,f(x)=x, 則f(2008.5)= ▲ 。
12. 已知
是兩條不重合的直線,
是三個兩兩不重合的平面,給出下列四個命題:
①若
,
,則
②若/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image055.gif)
③若
④若/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image059.gif)
其中正確命題的序號有_____▲_______。
13. 設
是正項數列,其前
項和
滿足:
,則數列
的通項公式
=_____▲_______。
14.
下列四種說法:
①命題“
x∈R,使得x2+1>3x”的否定是“
x∈R,都有x2+1≤3x”;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③在區間[-2,2]上任意取兩個實數a,b,則關系x的二次方程x2+2ax-b2+1=0的兩根都為實數的概率為
;
④過點(
,1)且與函數y=
圖象相切的直線方程是4x+y-3=0.
其中所有正確說法的序號是_____▲_______。
二、解答題:本大題共6小題,共90分.解答時應寫出文字說明、證明過程或演算步驟.
試題詳情
已知函數
,
.
試題詳情
(1)求
的最大值和最小值;
試題詳情
試題詳情
16.(本題滿分14分)
已知ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點,PA⊥平面ABCD.
(1)求證:PF⊥FD;
(2)問棱PA上是否存在點G,使EG//平面PFD,若存在,確定點G的位置,若不存在,請說明理由.
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
(1)求圓
和圓
的方程;
試題詳情
(2)過點B作直線
的平行線
,求直線
被圓
截得的弦的長度.
試題詳情
試題詳情
試題詳情
(1)當
>
時,橢圓的離心率的取值范圍
試題詳情
(2)直線
能否和圓
相切?證明你的結論
試題詳情
試題詳情
試題詳情
試題詳情
(2)求證:
在
上是增函數;
試題詳情
(3)求證:當
時,恒有
.
試題詳情
試題詳情
已知數列
是正項等比數列,滿足
試題詳情
試題詳情
(1)求數列
的通項公式;
試題詳情
(2)記
恒成立,若存在,請求出M的最小值;若不存在,請說明理由.
試題詳情
/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image164.gif)
連云港外國語學校2008―2009學年度高三階段性測試
數 學 試 卷
試題詳情
一、填空題(本大題共14小題,每小題5分,共70分)
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
二、解答題(5大題共90分,要求有必要的文字說明和步驟)
試題詳情
試題詳情
試題詳情
一、填空題:本大題共14小題,每小題5分,計70分. 1.第二象限 2. 3
3.Π 4. 5. _ _ 6. 2 7.
/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image176.gif) 8. 9. 10 10.向右平移 11. 3.5 12.①④
13. 14.①③ 二、解答題:本大題共6小題,計90分. 15.解:(1)/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image184.gif) . 又 , ,即 , .
(2) , , 且 ,
,即 的取值范圍是 .
16.(Ⅰ)證明:連結AF,在矩形ABCD中,因為AD=4,AB=2,點F是BC的中點,所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF⊥FD.又PA⊥平面ABCD,所以PA⊥FD. 所以FD⊥平面PAF. 故PF⊥FD. (Ⅱ)過E作EH//FD交AD于H,則EH//平面PFD,且 AH= AD. 再過H作HG//PD交PA于G,則GH//平面PFD,且 AG= PA. 所以平面EHG//平面PFD,則EG//平面PFD,從而點G滿足AG= PA. 17.解:(1)由于⊙M與∠BOA的兩邊均相切,故M到OA及OB的距離均為⊙M的半
徑,則M在∠BOA的平分線上, 同理,N也在∠BOA的平分線上,即O,M,N 三點共線,且OMN為∠BOA的平分線, ∵M的坐標為 ,∴M到 軸的距離為1,即 ⊙M的半徑為1, 則⊙M的方程為 , 設⊙N的半徑為 ,其與 軸的的切點為C,連接MA、MC, 由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,即 , 則OC= ,則⊙N的方程為 ; (2)由對稱性可知,所求的弦長等于過A點直線MN的平行線被⊙ 截得的弦 的長度,此弦的方程是 ,即: , 圓心N到該直線的距離d= ,則弦長= . 另解:求得B( ),再得過B與MN平行的直線方程 ,圓心N到該直線的距離 = ,則弦長= . (也可以直接求A點或B點到直線MN的距離,進而求得弦長) 18.解(1)由題意 的中垂線方程分別為 , 于是圓心坐標為 …………………………………4分 =/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image245.gif) > ,即 > 即 > 所以 > ,
于是 > 即 > ,所以 < 即 < < ………………8分 (2)假設相切, 則 ,……………………………………………………10分 ,………13分 這與 < < 矛盾.
故直線 不能與圓 相切. ………………………………………………16分 19.解(Ⅰ)∵ ,/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image287.gif) ∴/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image289.gif)
∴ , ∴ ,令 ,得 ,列表如下: /江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image099.gif)
/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image302.gif)
2 /江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image304.gif)
/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image306.gif)
/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image308.gif)
0 /江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image310.gif)
/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image147.gif)
遞減 極小值/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image313.gif) 遞增 ∴ 在 處取得極小值 , 即 的最小值為 .
,∵ ,∴ ,又 ,∴ .
(Ⅱ)證明由(Ⅰ)知, 的最小值是正數,∴對一切 ,恒有 從而當 時,恒有 ,故 在 上是增函數. (Ⅲ)證明由(Ⅱ)知: 在 上是增函數, ∴當 時, , 又 ,
∴ ,即 ,∴/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image155.gif) 故當 時,恒有 . 20.解:(1)數列{an}的前n項和 , …2分
又 , …………4分 是正項等比數列, , …………6分
公比 ,數列 …………8分 (2)解法一: , 由 …………11分 ,當 , …………13分
又 故存在正整數M,使得對一切 M的最小值為2.…16分 (2)解法二: 令 ,11分 由 , 函數 ……13分 對于/江蘇連云港外國語學校2008―2009學年度高三階段性測試數學試卷2008.12.files/image385.gif) 故存在正整數M,使得對一切 恒成立,M的最小值為2.……16分
久久精品免费一区二区视
| |