本資料來源于《七彩教育網》http://www.7caiedu.cn

第二十單元  復數

一.選擇題

(1) 6ec8aac122bd4f6e                                                                                                   (      )

       A.6ec8aac122bd4f6e               B.6ec8aac122bd4f6e               C.6ec8aac122bd4f6e                  D.6ec8aac122bd4f6e

(2) 復數6ec8aac122bd4f6e的共軛復數是                                                                              (      )

A.6ec8aac122bd4f6e                      B.6ec8aac122bd4f6e                 C.6ec8aac122bd4f6e               D.6ec8aac122bd4f6e

(3) 滿足條件|z-i|=|3+4i|復數z在復平面上對應點的軌跡是                                             (      )

A .一條直線        B .兩條直線       C. 圓           D. 橢圓

(4) 6ec8aac122bd4f6e2005 =                                                                                                      (      )

A.6ec8aac122bd4f6e          B.-6ec8aac122bd4f6e               C.6ec8aac122bd4f6e                     D.-6ec8aac122bd4f6e

(5) 設z1, z2是復數, 則下列結論中正確的是                                                                      (      )

A. 若z12+ z22>0,則z12>- z22            B. |z1-z2|=6ec8aac122bd4f6e       

C. z12+ z22=06ec8aac122bd4f6e z1=z2=0                 D. |z12|=|6ec8aac122bd4f6e|2

(6)復數z在復平面內對應的點為A, 將點A繞坐標原點, 按逆時針方向旋轉6ec8aac122bd4f6e, 再向左平移一個單位, 向下平移一個單位, 得到B點, 此時點B與點A恰好關于坐標原點對稱, 則復數z為                                                                                                                                    (      )

A.  -1        B.  1           C.  i            D.  - i

(7)設復數z =cosθ+icosθ, θ∈[0, π], ω= -1+i, 則|z-ω|的最大值是            (   )

A.  6ec8aac122bd4f6e+1                 B.  6ec8aac122bd4f6e                 C. 2                              D.  6ec8aac122bd4f6e 

(8) 設z1, z2是非零復數滿足z12+ z1z2+ z22=0,  則(6ec8aac122bd4f6e)2+(6ec8aac122bd4f6e)2的值是           (      )

A.  -1                          B.  1                     C. -2                             D.  2

(9)已知復數z=x+yi (x,y∈R, x≥6ec8aac122bd4f6e), 滿足|z-1|= x , 那么z在復平面上對應的點(x,y)的軌跡

是                                                                                                                                            (      )

A.  圓                          B.  橢圓                C. 雙曲線                    D . 拋物線

(10) 設z∈C, 且|z|=1, 當|(z-1)(z-i)|最大時, z =                                                          (      )

A . -1                          B.  - i                      C.  -6ec8aac122bd4f6e-6ec8aac122bd4f6ei            D.  6ec8aac122bd4f6e+6ec8aac122bd4f6e i

二.填空題

(11)已知復數z1=3+4i, z2=t+i,,且z1?6ec8aac122bd4f6e是實數,則實數t等于           .

(12) 若t∈R, t≠-1, t≠0時,復數z =6ec8aac122bd4f6e的模的取值范圍是    .

(13)若a≥0, 且z|z|+az+i=0, 則復數z =                   

(14)設z=log2(m2-3m-3)+i log2(m-3) (m∈R), 若z對應點在直線x-2y+1=0上, 則m的值是                 .

三.解答題

(15) 在復數范圍內解方程6ec8aac122bd4f6e(i為虛數單位).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16)已知復數z1滿足(1+i)z1=-1+5i, z2=a-2-i, 其中i為虛數單位,a∈R, 若6ec8aac122bd4f6e<6ec8aac122bd4f6e,求a的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(17) 已知z1, z2是復數, 求證: 若|z1-6ec8aac122bd4f6e|=|1- z1z2|,則|z1|, |z2|中至少有一個值為1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(18)設復數z1, z2滿足z1z2+2i z1-2i z2+1=0.

(Ⅰ)若z1, z2滿足6ec8aac122bd4f6e- z1=2i , 求z1, z2

(Ⅱ)若|z1|=6ec8aac122bd4f6e, 是否存在常數k, 使得等式|z2-4 i |=k恒成立, 若存在,試求出k; 若不存在說明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

一選擇題:

1.C 

[解析]:6ec8aac122bd4f6e

2.B  

[解析]: 復數6ec8aac122bd4f6e=6ec8aac122bd4f6e,故z的共軛復數是6ec8aac122bd4f6e

3.C

[解析]: |3+4i|=5

滿足條件|z-i|=|3+4i|復數z在復平面上對應點的軌跡是

圓心為(0,1),半徑為5的圓。

4.A

[解析]:  6ec8aac122bd4f6e

6ec8aac122bd4f6e2005= i

5.D

[解析]:  A.錯;反例: z1=2+i, z2=2-i,           

B.錯 ;反例: z1=2+i, z2=2-i,       

C.錯;反例: z1=1, z2=i,                

D.正確,z1=a+bi,則 |z12|=a2+b2,|6ec8aac122bd4f6e|2 =a2+b2,故|z12|=|6ec8aac122bd4f6e|2

 

6.B

[解析]:  設z=a+bi,B點對應的復數為z1=,則z1= (a+bi) i-1-i=(-b-1)+(a-1)i

              ∵點B與點A恰好關于坐標原點對稱

6ec8aac122bd4f6e

7.C

[解析]:   |z-ω|=6ec8aac122bd4f6e

∵θ∈[0, π], ∴當θ=0時,|z-ω|的最大值是2

8.A

[解析]:   z1, z2是非零復數滿足z12+ z1z2+ z22=0,  則z12+2 z1z2+ z22= z1z2

               6ec8aac122bd4f6e

∴(6ec8aac122bd4f6e)2+(6ec8aac122bd4f6e)2=6ec8aac122bd4f6e

9.D

[解析]:   已知復數z=x+yi (x,y∈R, x≥6ec8aac122bd4f6e), 滿足|z-1|= x , 6ec8aac122bd4f6e

                即6ec8aac122bd4f6e

那么z在復平面上對應的點(x,y)的軌跡是拋物線

10.C

[解析]: |z|=1, 設z=cosθ+isinθ,則|(z-1)(z-i)|=26ec8aac122bd4f6e

       令6ec8aac122bd4f6e,則6ec8aac122bd4f6e=6ec8aac122bd4f6e

              ∴當t=6ec8aac122bd4f6e即θ=6ec8aac122bd4f6e時,|(z-1)(z-i)|取最大值,此時,z= -6ec8aac122bd4f6e-6ec8aac122bd4f6ei

二填空題:

11. 6ec8aac122bd4f6e

[解析]: 已知復數z1=3+4i, z2=t+i,, 則z1?6ec8aac122bd4f6e=(3t+4)+(4t-3)i,

∵z1?6ec8aac122bd4f6e是實數, ∴4t-3=0,即t=6ec8aac122bd4f6e

12. 6ec8aac122bd4f6e 

[解析]:    若t∈R, t≠-1, t≠0時,復數z =6ec8aac122bd4f6e的模為|z|

        則|z|2=6ec8aac122bd4f6e

故z的模的取值范圍是6ec8aac122bd4f6e

13. 6ec8aac122bd4f6e

[解析]:    若a≥0, 且z|z|+az+i=0, 則z(|z|+a)+i=0, |z|+a>0,故 z為純虛數,

設z = yi  (y6ec8aac122bd4f6e  ,    則 (|y|+a)yi+i=0  故y2-y-1=0

y =   6ec8aac122bd4f6e     

z =6ec8aac122bd4f6e

14.  6ec8aac122bd4f6e

[解析]: 設z=log2(m2-3m-3)+i log2(m-3) (m∈R), 若z對應點在直線x-2y+1=0上,

則log2(m2-3m-3)-2 log2(m-3)+1=0

故2(m2-3m-3)=(m-3)2

        ∴m=6ec8aac122bd4f6e或m=-6ec8aac122bd4f6e(不適合)

三解答題

(15)解: 原方程化簡為6ec8aac122bd4f6e,

            設z=x+yi(x、y∈R),代入上述方程得 x2+y2+2xi=1-i,

         ∴x2+y2=1且2x=-1,解得x=-6ec8aac122bd4f6e且y=±6ec8aac122bd4f6e,

     ∴原方程的解是z=-6ec8aac122bd4f6e±6ec8aac122bd4f6ei.

(16)解: 由題意得 z1=6ec8aac122bd4f6e=2+3i,于是6ec8aac122bd4f6e=6ec8aac122bd4f6e=6ec8aac122bd4f6e,6ec8aac122bd4f6e=6ec8aac122bd4f6e.

6ec8aac122bd4f6e<6ec8aac122bd4f6e,得a28a+7<0, 解得1<a<7.

(17) 證: ∵|z1-6ec8aac122bd4f6e|=|1- z1z2|

∴|z1-6ec8aac122bd4f6e|2=|1- z1z2|2.

∴(z1-6ec8aac122bd4f6e)6ec8aac122bd4f6e=(1- z1z2)6ec8aac122bd4f6e.

∴(z1-6ec8aac122bd4f6e)(6ec8aac122bd4f6e- z2)=( 1- z1z2)(1-6ec8aac122bd4f6e6ec8aac122bd4f6e).

化簡后得z16ec8aac122bd4f6e+ z26ec8aac122bd4f6e=1+ z1z26ec8aac122bd4f6e6ec8aac122bd4f6e.

∴|z1|2+|z2|2=1+|z1|2?|z2|2.

∴(|z1|2-1)(|z2|2-1)=0. ∴|z1|2=1,或|z2|2=1.

∴|z1|,|z2|中至少有一個為1.

(18)解: (Ⅰ) 由6ec8aac122bd4f6e=z1+2i , 兩邊同時取共軛復數可得: z2=6ec8aac122bd4f6e-2i .

   代入已知方程得: z1(6ec8aac122bd4f6e-2i )+ 2i z1-2i(6ec8aac122bd4f6e-2i)+1=0.

即|z1|2-2i6ec8aac122bd4f6e-3=0. 令z1=a+bi ,

即可得到 a2+b2-2i(a-bi)-3=0.

即 (a2+b2-2b-3)- 2ai =0.

解得a=0, b=3,或a=0, b=-1.

∴z1=3i, z2=-5i, 或z1=-i , z2=-i .    

(Ⅱ)由已知得z1=6ec8aac122bd4f6e. 又∵|z1|=6ec8aac122bd4f6e,

∴|6ec8aac122bd4f6e|=6ec8aac122bd4f6e.

∴| 2i z2-1|2=3|z2+ 2i|2.

∴(2i z2-1)( -2i6ec8aac122bd4f6e-1)=3(z2+ 2i)(6ec8aac122bd4f6e- 2i).

整理得: z26ec8aac122bd4f6e+4i z2-4i6ec8aac122bd4f6e-11=0.

即(z2-4i)( 6ec8aac122bd4f6e+4i)=27.

∴| z2-4i|2=27,

即| z2-4i|=36ec8aac122bd4f6e.

∴存在常數k=36ec8aac122bd4f6e, 使得等式| z2-4i|=k恒成立.

 

 

 

 

 

 

 

本資料來源于《七彩教育網》http://www.7caiedu.cn


同步練習冊答案
久久精品免费一区二区视