高三(下)數學復習檢測題(一)

一、選擇題(5×10=50)

1、已知集合,,則集合(  )

試題詳情

 

試題詳情

2、設函數)為奇函數,,,則(  )

試題詳情

 

試題詳情

3、命題“”的否定是(   )

試題詳情

A、任意,       B、任意

試題詳情

C、存在        D、存在,

試題詳情

4、若互不相等的實數、成等差數列,、成等比數列,且,則的值為(  )

試題詳情

 

試題詳情

5、把函數的圖象沿向量)的方向平移后,所得的圖象關于軸對稱,則的最小值是(   )

試題詳情

 

試題詳情

6、在空間給出下列命題:①若平面內的一條直線垂直于平面內的任意一條直線,則;②若直線與平面內的一條直線平行,則;③若直線與平面內的兩條直線都垂直,則;④若平面內的兩條直線都平行于平面,則;其中正確的個數是(   )

試題詳情

試題詳情

7、 已知向量,若的夾角為,則直線與圓的位置關系是(   )

A、相交但不過圓心         B、相交且過圓心        C、相切        D、相離

試題詳情

8、已知點,O是坐標原點,點的坐標滿足,設z為上的投影,則z的取值范圍是(  )

試題詳情

試題詳情

9、已知橢圓)與雙曲線,)有相同的焦點,若、的等比中項,的等差中項,則橢圓的離心率是(  )

試題詳情

試題詳情

10、 若不等式上恒成立,則的取值范圍是(  )

試題詳情

試題詳情

二、填空題(4×6=24)

11、設向量,若向量與向量共線,則          ;

試題詳情

12、已知不等式組的解集是不等式的解集的子集,則實數的取值范圍是_______________;

試題詳情

13、 在中,邊為最大邊,且,則的最大值是________;

試題詳情

14、設滿足的點的集合為,滿足的點的集合為,則所表示圖形的面積是___________;

試題詳情

15、在中,,若以為焦點的橢圓經過點,則該橢圓的離心率為           

試題詳情

16、已知三棱柱的側棱與底面邊長都相等,在底面內的射影為的中心,則與底面所成角的正弦值為           

試題詳情

三、解答題

17、(本小題滿分13分)已知,,函數;

試題詳情

⑴、求的最小正周期;

試題詳情

⑵、若,求的值域;

 

 

 

 

 

 

試題詳情

18、(本小題滿分13分)一袋中裝有分別標記著1、2、3、4數字的4個球, 從這只袋中每次取出1個球, 取出后放回, 連續取三次, 設三次取出的球中數字最大的數為;

試題詳情

⑴、求時的概率;

試題詳情

⑵、求的概率分布列及數學期望;

 

 

 

 

 

 

 

 

試題詳情

19、(本小題13分)四棱錐中,底面為平行四邊形,側面;已知

試題詳情

⑴、證明:

試題詳情

⑵、求直線與平面所成角的大;

 

 

 

 

 

 

 

 

試題詳情

20、(本小題13分)已知函數(x>0)在處取得極值,其中為常數;

試題詳情

⑴、試確定的值;

試題詳情

⑵、討論函數的單調區間;

試題詳情

⑶、若對任意,不等式恒成立,求的取值范圍;

 

 

 

 

 

 

 

 

試題詳情

21、(本小題12分)設、分別是橢圓的左、右焦點;

試題詳情

⑴、若是該橢圓上的一個動點,求的最大值和最小值;

試題詳情

⑵、設過定點的直線與橢圓交于不同的兩點、,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍;

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

22、(本小題滿分12分)已知數列中的相鄰兩項是關于的方程的兩個根,且;

試題詳情

⑴、求

試題詳情

⑵、求數列的前項和

試題詳情

⑶、記,

試題詳情

求證:;

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

題號

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴,
.                               (12分)

18、解:(1)表示取出的三個球中數字最大者為3.

①三次取球均出現最大數字為3的概率

②三取取球中有2次出現最大數字3的概率

③三次取球中僅有1次出現最大數字3的概率

.   ……………………………………………………6分

(2)在時, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結,由側面底面,得底面

因為,所以,

,故為等腰直角三角形,,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設

,由,,得

,

的面積

連結,得的面積

到平面的距離為,由于,得

,

解得

與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對求導得

由題意,因此,解得

(II)由(I)知),令,解得

時,,此時為減函數;

時,,此時為增函數.

因此的單調遞減區間為,而的單調遞增區間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設,則

因為,故當,即點為橢圓短軸端點時,有最小值

,即點為橢圓長軸端點時,有最大值

解法二:易知,所以,設,則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設條件,可設直線,

聯立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個根為,

時,,

所以;

時,,

所以;

時,,

所以時;

時,,

所以

(II)解:

(III)證明:,

所以

時,

,

同時,

綜上,當時,

 

 

 


同步練習冊答案
久久精品免费一区二区视