題目列表(包括答案和解析)
設0<a<1,函數f(x)=loga(2ax-2),則使得f(x)<0的x的取值范圍為________.
設0<
x< 1, +
的最小值為 ( )
A.8 B.10 C.1 D.9
(本小題滿分13分)已知函數.
(1)求函數的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數在區間
上的圖象.
(3)設0<x<,且方程
有兩個不同的實數根,求實數m的取值范圍.
(理科10分)在△中,
所對的邊分別為
,滿足
成等差數列,
,求點
的軌跡方程.
(文科10分)設0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a不同時大于.
已知.
(1)求的單調區間;
(2)證明:當時,
恒成立;
(3)任取兩個不相等的正數,且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當k0時,
>0,所以函數g(x)的增區間為(0,+
),無減區間;
當k>0時,>0,得x>k;
<0,得0<x<k∴增區間(k,+
)減區間為(0,k)(3’)
(2)設h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當x變化時,h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設G(x)=lnx-(x
1)
=
=
0,當且僅當x=1時,
=0所以G(x) 為減函數, 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當x
1時, 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 設H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數,并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴lnx0 –lnx>0, ∴x0 >x
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com