(一)提出問題 已知點P和直線l:Ax+By+C=0.點的坐標和直線的方程確定后.它們的位置也就確定了.點到直線的距離也是確定的.怎樣求點P到直線l的距離呢? 查看更多

 

題目列表(包括答案和解析)

(2008•崇明縣一模)已知:函數fn(x)(n∈N*)的定義域為(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且當n>1且n∈N*時,滿足fn(x)-fn-1(x)=xn+
1
xn

(1)求函數fn(x)(n∈N*)的解析式;
(2)當n=1,2,3時,分別研究函數fn(x)的單調性與值域;
(3)借助(2)的研究過程或研究結論,提出一個類似(2)的研究問題,并寫出問題的研究過程與研究結論.
【第(3)小題將根據你所提出問題的質量,以及解決所提出問題的情況進行分層評分】

查看答案和解析>>

(2006•浦東新區模擬)(1)已知函數f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數a,x0(x0≠3,保留4位有效數字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個不同點關于直線y=x對稱,求實數p的取值范圍;
(3)當0<a<1時,就函數y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數f(x)=xlnx有如下性質:在區間(0,
1
e
]
上單調遞減,在區間[
1
e
,1)
上單調遞增.解題過程中可以利用;②將根據提出和解決問題的不同層次區別給分.)

查看答案和解析>>

(1)已知函數f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數a,x0(x0≠3,保留4位有效數字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個不同點關于直線y=x對稱,求出其坐標;若曲線y=x+
p
x
(p≠0)上存在兩個不同點關于直線y=x對稱,求實數p的范圍;
(3)當0<a<1時,就函數y=ax與y=logax的圖象的交點情況提出你的問題,并取a=
1
16
a=
2
2
加以研究.當0<a<1時,就函數y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數f(x)=xlnx有如下性質:在區間(0,
1
e
]
上單調遞減,在區間[
1
e
,1)
上單調遞增.解題過程中可以利用;②將根據提出和解決問題的不同層次區別給分.)

查看答案和解析>>

(1)已知函數f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數a,x(x≠3,保留4位有效數字),使得f(x)<0成立;
(2)在曲線上存在兩個不同點關于直線y=x對稱,求出其坐標;若曲線(p≠0)上存在兩個不同點關于直線y=x對稱,求實數p的范圍;
(3)當0<a<1時,就函數y=ax與y=logax的圖象的交點情況提出你的問題,并取加以研究.當0<a<1時,就函數y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數f(x)=xlnx有如下性質:在區間上單調遞減,在區間上單調遞增.解題過程中可以利用;②將根據提出和解決問題的不同層次區別給分.)

查看答案和解析>>

(1)已知函數f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數a,x0(x0≠3,保留4位有效數字),使得f(x0)<0成立;
(2)若曲線y=x+數學公式(p≠0)上存在兩個不同點關于直線y=x對稱,求實數p的取值范圍;
(3)當0<a<1時,就函數y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數f(x)=xlnx有如下性質:在區間數學公式上單調遞減,在區間數學公式上單調遞增.解題過程中可以利用;②將根據提出和解決問題的不同層次區別給分.)

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视