21.解:(1)由得-------- 又的定義域為.所以 當時. 當時..為減函數 當時..為增函數--------- 所以當時.的單調遞增區間為 單調遞減區間為------- 知當時..遞增無極值--- 所以在處有極值.故且 因為且.所以在上單調 當為增區間時.恒成立.則有 --------------- 當為減區間時.恒成立.則有 無解 -------- 由上討論得實數的取值范圍為 ---------- 查看更多

 

題目列表(包括答案和解析)

已知函數處取得極值2.

⑴ 求函數的解析式;

⑵ 若函數在區間上是單調函數,求實數m的取值范圍;

【解析】第一問中利用導數

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得,                …………9分

當f(x)在區間(m,2m+1)上單調遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视