題目列表(包括答案和解析)
(本小題滿分13分)
已知中心在坐標原點O的橢圓C經過點A(2,3),且點F(2,0)為其右焦點。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線,使得直線
與橢圓C有公共點,且直線OA與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由。
【命題意圖】本小題主要考查直線、橢圓等基礎知識,考查運算求解能力、推理論證能力,考查函數與方程思想、數形結合思想、化歸與轉化思想。
(本小題滿分13分)
已知中心在坐標原點O的橢圓C經過點A(2,3),且點F(2,0)為其右焦點。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線,使得直線
與橢圓C有公共點,且直線OA與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由。
【命題意圖】本小題主要考查直線、橢圓等基礎知識,考查運算求解能力、推理論證能力,考查函數與方程思想、數形結合思想、化歸與轉化思想。
在復平面內, 是原點,向量
對應的復數是
,
=2+i。
(Ⅰ)如果點A關于實軸的對稱點為點B,求向量對應的復數
和
;
(Ⅱ)復數,
對應的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結論。
【解析】第一問中利用復數的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O為圓心,為半徑的圓上
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com