19. 三棱柱A1B1C1-ABC的側面BCC1B1是菱形.∠CBB1=60°.AB⊥面BCC1B1. ⑴求證B1C⊥AC1 ⑵在側面ACC1A1內是否存在一點P.使P-B1BC為正三棱維?證明你的結論. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,已知直三棱柱ABCA1B1C1的側棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,DA A1的中點. (Ⅰ)求異面直線ABC1D所成的角(用反三角函數表示);(Ⅱ)若EAB上一點,試確定點EAB上的位置,使得A1EC1D;

(Ⅲ)在(Ⅱ)的條件下,求點D到平面B1C1E的距離.

查看答案和解析>>

(本小題滿分12分)

如圖,已知三棱柱ABC-A1B1C1,側面BCC1B1丄底面ABC.

(I)若M、N分別是AB,A1C的中點,求證:MN//平面BCC1B1

(II)若三棱柱ABC-A1B1C1的各棱長均為2,側棱BB1與底面 ABC所成的角為60°.問在線段A1C1上是否存在一點P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說明 理由.

 

查看答案和解析>>

( 本小題滿分12分)

如圖,三棱柱ABC—A1B1C1中,底面為正三角形,側棱與底面垂直,D是BC的中點,AA1=AB=1。

(1)   求證:A1C∥平面AB1D;

(2)   求點C到平面AB1D的距離。

 

查看答案和解析>>

(本小題滿分12分)

如圖,已知三棱柱ABCA1B1C1的側棱與底面垂直,AA1ABAC=1,ABAC,MN分別是CC1、BC的中點,點PA1B1上,且滿足=λ(λR).

(1)證明:PNAM;

(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該最大角的正切值;

(3)若平面PMN與平面ABC所成的二面角為45°,試確定點P的位置.

 

查看答案和解析>>

(本小題滿分12分)

 

如圖,在體積為1的三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P為線段AB上的動點.

(1)求證:CA1⊥C1P;

(2)當AP為何值時,二面角C1-PB1-A1的大小為?

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视