題目列表(包括答案和解析)
如圖,已知橢圓+
=1(a>b>0)的離心率為
,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為4(
+1).一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(Ⅲ)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值,若不存在,請說明理由.
如圖,A1,A為橢圓的兩個頂點,F1、F2為橢圓的兩個焦點.
(1)寫出橢圓的方程及其準線方程.
(2)過線段OA上異于O、A的任一點K作OA的垂線,交橢圓于P,P1兩點,直線A1P與AP1交于點M.
求證:點M在雙曲線-
=1上.
如圖,已知橢圓的離心率為
,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為
.一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(Ⅲ)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?
若存在,求λ的值,若不存在,請說明理由.
如圖,已知橢圓的離心率為
,以該橢圓上的點和橢圓的左、右焦點F1,F2為頂點的三角形的周長為4(
+1).一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1·k2=1;
(Ⅲ)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
如圖,已知橢圓=1(a>b>0)的離心率為
,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(
+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com