一名學生騎自行車上學.從他的家到學校的途中有6個交通崗.假設他在各交通崗遇到紅燈的事件是獨立的.并且概率都是 (1)求這名學生首次遇到紅燈前.已經過了兩個交通崗的概率, (2)求這名學生在途中遇到紅燈數的期望與方差. 解:(1)當這名學生首次遇到紅燈前.已經過了兩個交通崗的.則必須是這個學生通過第一個交通崗和第二個交通崗都遇到綠燈.且通過第三次交通崗時是紅燈.遇到綠燈的概率是1-1/3=2/3.且它們彼此之間互相獨立. 所以所求的概率是P= 答--- (2)途中遇到紅燈數滿足~B期望E=6*1/3=2 方差D=6*1/3*2/3=4/3 答- 查看更多

 

題目列表(包括答案和解析)

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數的值域和最小正周期;
(2)求函數的遞減區間.

查看答案和解析>>

(本小題滿分12分)

某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區間.

查看答案和解析>>

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视