直線y=x+1與橢圓mx2+ny2=1相交于A.B兩點.若弦AB的中點的橫坐標等于-.則雙曲線-=1的兩條漸近線所夾銳角的正切值為 . 查看更多

 

題目列表(包括答案和解析)

直線y=x-1與橢圓
x2
4
+
y2
2
=1相交于A,B兩點,則||AB|=
 

查看答案和解析>>

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
相交于A、B兩點.
(1)若橢圓的離心率為
3
3
,焦距為2,求線段AB的長;
(2)若向量
OA
與向量
OB
互相垂直(其中O為坐標原點),當橢圓的離心率e∈[
1
2
2
2
]
時,求橢圓的長軸長的最大值.

查看答案和解析>>

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點M(0,2),離心率e=
6
3

(Ⅰ)求橢圓的方程;
(Ⅱ)設直線y=x+1與橢圓相交于A,B兩點,求S△AMB

查看答案和解析>>

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B兩點,O為坐標原點,M為AB的中點.
(I)求證:直線AB與OM斜率的乘積等于e2-1(e為橢圓的離心率);
(II)若2|
OM
|=|
AB
|且e∈(0,
2
2
)
時,求a的取值范圍.

查看答案和解析>>

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B兩點,且線段AB的中點在直線l:x-2y=0上.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)若橢圓的右焦點關于直線l的對稱點在圓x2+y2=4上,求此橢圓的方程.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视