橢圓的左焦點為F.A是兩個頂點.如果點F到直線AB的距離等于那么該橢圓的離心率等于 查看更多

 

題目列表(包括答案和解析)

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任一點P到兩個焦點的距離的和為6,焦距為4
2
,A,B分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若P與A,B均不重合,設直線PA與PB的斜率分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)設C(x,y)(0<x<a)為橢圓上一動點,D為C關于y軸的對稱點,四邊形ABCD的面積為S(x),設f(x)=
S2(x)
x+3
,求函數f(x)的最大值.

查看答案和解析>>

橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上任一點P到兩個焦點的距離的和為6,焦距為4
2
,A,B分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若P與A,B均不重合,設直線PA與PB的斜率分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)設C(x,y)(0<x<a)為橢圓上一動點,D為C關于y軸的對稱點,四邊形ABCD的面積為S(x),設f(x)=
S2(x)
x+3
,求函數f(x)的最大值.

查看答案和解析>>

已知F是橢圓的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為,點B在x軸上,AB⊥AF,A,B,F三點確定的圓C恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過F作斜率為k(k≠0)的直線l交橢圓于M,N兩點,P為線段MN的中點,設O為橢圓中心,射線OP交橢圓于點Q,若,若存在求k的值,若不存在則說明理由.

查看答案和解析>>

已知F是橢圓的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為,點B在x軸上,AB⊥AF,A、B、F三點確定的圓C恰好與直線相切.
(1)求橢圓的方程;
(2)設O為橢圓的中心,過F點作直線交橢圓于M、N兩點,在橢圓上是否存在點T,使得,如果存在,則求點T的坐標;如果不存在,請說明理由.

查看答案和解析>>

已知F是橢圓的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為,點B在x軸上,AB⊥AF,A,B,F三點確定的圓C恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過F作斜率為k(k≠0)的直線l交橢圓于M,N兩點,P為線段MN的中點,設O為橢圓中心,射線OP交橢圓于點Q,若,若存在求k的值,若不存在則說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视