1.若雙曲線的實半軸長為2.焦距為6.則該雙曲線的離心率為 (A) (B) (C) (D) 3 查看更多

 

題目列表(包括答案和解析)

已知雙曲線E的離心率為e,左、右兩焦點分別為F1、F2,拋物線CF2為頂點,F1為焦點,點P為拋物線與雙曲線右支上的一個交點,若a|PF2|+c|PF1|=8a 2(其中a、c分別為雙曲線的實半軸長和半焦距),則e的值為  (  A  )學科網

A.   B. 3    C.   D. 學科網

查看答案和解析>>

已知雙曲線E的離心率為e,左、右兩焦點分別為F1、F2,拋物線CF2為頂點,F1為焦點,點P為拋物線與雙曲線右支上的一個交點,若a|PF2|+c|PF1|=8a 2(其中a、c分別為雙曲線的實半軸長和半焦距),則e的值為  (    )學科網

A.               B. 3              C.             D. 學科網

查看答案和解析>>

(湖南長郡中學模擬)如下圖,以、為焦點的雙曲線E與半徑為c的圓O相交于CD、、,連接OB交于點H,且有,其中,B是圓O與坐標軸的交點,c為雙曲線的半焦距.

(1)c=1時,求雙曲線E的方程;

(2)試證:對任意正實數c,雙曲線E的離心率為常數;

(3)連接,與雙曲線E交于點F,是否存在實數λ,使恒成立?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發的射線l的斜率為k,且k為有理數.射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數的點為有理點.我們知道,一個有理數可以表示為,其中p、q均為整數且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發的射線l的斜率為k,且k為有理數.射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數的點為有理點.我們知道,一個有理數可以表示為,其中p、q均為整數且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视