題目列表(包括答案和解析)
已知命題及其證明:
(1)當時,左邊=1,右邊=
所以等式成立;
(2)假設時等式成立,即
成立,
則當時,
,所以
時等式也成立。
由(1)(2)知,對任意的正整數n等式都成立。
經判斷以上評述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
教材中是用“AB且B
A,則A=B”來定義的,實際上也可以說當集合A與B的元素完全相同時,則A________B.教材中的定義實際上給出了一種證明兩個集合相等的方法,即欲證A=B,只需證AB與BA都成立即可.
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說明理由.
【解析】第一問中取,則
;
…………1分
對等式兩邊求導,得
取,則
得到結論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當時,
;
當時,
;
猜想:當時,
運用數學歸納法證明即可。
解:⑴取,則
;
…………1分
對等式兩邊求導,得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當時,
;
當時,
;
當時,
;
…………6分
猜想:當時,
,下面用數學歸納法證明:
由上述過程可知,時結論成立,
假設當時結論成立,即
,
當時,
而
∴
即時結論也成立,
∴當時,
成立。
…………11分
綜上得,當時,
;
當時,
;
當時,
已知數列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結論。
解:(Ⅰ)當時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設,
,
則.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當時,
,命題成立;
②假設時,命題成立,即
,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數,不等式②成立. ………………10分
②由于,
所以,
從而.
也即
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com