且f()>1.得a>2. 查看更多

 

題目列表(包括答案和解析)

設f(x)=ax3+bx2+cx(a>b>c),已知函數f(x)在x=1處取得極值,且曲線f(x)在x=t處的切線斜率為-2a.
(1)求
c
a
的取值范圍;
(2)若函數f(x)的單調遞減區間為[m,n],求|m-n|的最小值;
(3)判斷曲線f(x)在x=t-
8
3
處的切線斜率的正負,并說明理由.

查看答案和解析>>

設f(x)=logag(x)(a>0且a≠1)
(1)若f(x)=log
1
2
(3x-1)
,且滿足f(x)>1,求x的取值范圍;
(2)若g(x)=ax2-x,是否存在a使得f(x)在區間[
1
2
,3]上是增函數?如果存在,說明a可以取哪些值;如果不存在,請說明理由.
(3)定義在[p,q]上的一個函數m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q
將區間[p,q]任意劃分成n個小區間,如果存在一個常數M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱函數m(x)為在[p,q]上的有界變差函數.試判斷函數f(x)=log4(4x2-x)是否為在[
1
2
,3]上的有界變差函數?若是,求M的最小值;若不是,請說明理由.

查看答案和解析>>

設f(x)是定義在(0,+∞)的可導函數,且不恒為0,記gn(x)=
f(x)
n
(n∈N*)
.若對定義域內的每一個x,總有gn(x)<0,則稱f(x)為“n階負函數”;若對定義域內的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數”([gn(x)]為函數gn(x)的導函數).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1階負函數”,又是“1階不減函數”,求實數a的取值范圍;
(2)對任給的“n階不減函數”f(x),如果存在常數c,使得f(x)<c恒成立,試判斷f(x)是否為“n階負函數”?并說明理由.

查看答案和解析>>

(2013•江蘇一模)某部門要設計一種如圖所示的燈架,用來安裝球心為O,半徑為R(米)的球形燈泡.該燈架由燈托、燈桿、燈腳三個部件組成,其中圓弧形燈托
EA
,
EB
,
EC
ED
所在圓的圓心都是O、半徑都是R(米)、圓弧的圓心角都是θ(弧度);燈桿EF垂直于地面,桿頂E到地面的距離為h(米),且h>R;燈腳FA1,FB1,FC1,FD1是正四棱錐F-A1B1C1D1的四條側棱,正方形A1B1C1D1的外接圓半徑為R(米),四條燈腳與燈桿所在直線的夾角都為θ(弧度).已知燈桿、燈腳的造價都是每米a(元),燈托造價是每米
a
3
(元),其中R,h,a都為常數.設該燈架的總造價為y(元).
(1)求y關于θ的函數關系式;
(2)當θ取何值時,y取得最小值?

查看答案和解析>>

設f(x)=ax3+bx2+cx(a>b>c),已知函數f(x)在x=1處取得極值,且曲線f(x)在x=t處的切線斜率為-2a.
(1)求數學公式的取值范圍;
(2)若函數f(x)的單調遞減區間為[m,n],求|m-n|的最小值;
(3)判斷曲線f(x)在數學公式處的切線斜率的正負,并說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视