題目列表(包括答案和解析)
已知數列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結論。
解:(Ⅰ)當時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設,
,
則.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當時,
,命題成立;
②假設時,命題成立,即
,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數,不等式②成立. ………………10分
②由于,
所以,
從而.
也即
設f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數的圖象可由
的圖象經過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
【解析】第一問中,
即變換分為三步,①把函數
的圖象向右平移
,得到函數
的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數
的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;
第二問中因為,所以
,則
,又
,
,從而
進而得到結論。
(Ⅰ) 解:
即!3分
變換的步驟是:
①把函數的圖象向右平移
,得到函數
的圖象;
②令所得的圖象上各點的縱坐標不變,把橫坐標縮短到原來的倍,得到函數
的圖象;
③令所得的圖象上各點的橫坐標不變,把縱坐標伸長到原來的2倍,得到函數的圖象;…………………………………3分
(Ⅱ) 解:因為,所以
,則
,又
,
,從而
……2分
(1)當時,
;…………2分
(2)當時;
若函數在定義域內存在區間
,滿足
在
上的值域為
,則稱這樣的函數
為“優美函數”.
(Ⅰ)判斷函數是否為“優美函數”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數為“優美函數”,求實數
的取值范圍.
【解析】第一問中,利用定義,判定由題意得,由
,所以
第二問中, 由題意得方程有兩實根
設所以關于m的方程
在
有兩實根,
即函數與函數
的圖像在
上有兩個不同交點,從而得到t的范圍。
解(I)由題意得,由
,所以
(6分)
(II)由題意得方程有兩實根
設所以關于m的方程
在
有兩實根,
即函數與函數
的圖像在
上有兩個不同交點。
設數列的各項均為正數.若對任意的
,存在
,使得
成立,則稱數列
為“Jk型”數列.
(1)若數列是“J2型”數列,且
,
,求
;
(2)若數列既是“J3型”數列,又是“J4型”數列,證明:數列
是等比數列.
【解析】1)中由題意,得,
,
,
,…成等比數列,且公比
,
所以.
(2)中證明:由{}是“j4型”數列,得
,…成等比數列,設公比為t. 由{
}是“j3型”數列,得
,…成等比數列,設公比為
;
,…成等比數列,設公比為
;
…成等比數列,設公比為
;
如圖,四棱柱中,
平面
,底面
是邊長為
的正方形,側棱
.
(1)求三棱錐的體積;
。ǎ玻┣笾本與平面
所成角的正弦值;
。ǎ常┤衾上存在一點
,使得
,當二面角
的大小為
時,求實數
的值.
【解析】(1)在中,
.
(3’)
(2)以點D為坐標原點,建立如圖所示的空間直角坐標系,則
(4’)
,設平面
的法向量為
,
由得
,
(5’)
則,
. (7’)
(3)
設平面的法向量為
,由
得
,
(10’)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com