8.已知函數的導函數是,且則曲線在處的切線方程是 A.y=3x+5 B.y=3x+6 C.y=2x+5 D.y=2x+4 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知函數f(x)的導函數是,且f(-1)=2,,則曲線y=f(x)在點x=-1處的切線方程是

[  ]

A.y=3x+5

B.y=3x+6

C.y=2x+5

D.y=2x+4

查看答案和解析>>

已知下列四個命題:
①若函數y=f(x)在x°處的導數f'(x°)=0,則它在x=x°處有極值;
②不論m為何值,直線y=mx+1均與曲線
x2
4
+
y2
b2
=1
有公共點,則b≥1;
③設直線l1、l2的傾斜角分別為α、β,且1+tanβ-tanα+tanαtanβ=0,則l1和l2的夾角為45°;
④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
以上四個命題正確的是
 
(填入相應序號).

查看答案和解析>>

已知f(x)是可導的函數,且
lim
x→0
f(x+2)-f(2)
2x
=-2
,則曲線y=f(x)在點(2,2)處的切線的一般式方程是
4x+y-10=0
4x+y-10=0

查看答案和解析>>

已知f(x)是可導的偶函數,且
lim
x→0
f(2+x)-f(2)
2x
=-1
,則曲線y=f(x)在(-2,1)處的切線方程是______.

查看答案和解析>>

一、選擇題:

1.C  2.D  3.C  4.A   5.B  6.C  7.B   8.A   9.D  10.A  11.A  12.C

二、填空題:

13.         14. 26   15. -3    16.     17. 3         18.   

19.   20.(0,1) 21.     22.    23.765        24.5  

25.2          26.

三、解答題:

27、解:(1)∵cos3x=4cos3x-3cosx,則=4cos2x-3=2cos2x-1

∴f(x)=2cos2x-1+2sin2x

=2sin(2x+)-1                            

在2x+=2kπ+時,f(x)取得最大值2-1

即在x=kπ+ (k∈Z)時,f(x)取得最大值2-1 

(2)∵f(x)=2sin(2x+)-1

要使f(x)遞減,x滿足2kπ+≤2x+≤2kπ+

即kπ+≤x≤kπ+ (k∈Z)

又∵cosx≠0,即x≠kπ+ (k∈Z)               

 

28、解:(1)p(ξ個正面向上,4-ξ個背面向上的概率,其中ξ可能取值為0,1,2,3,4。

∴p(ξ=0)= (1-)2(1-a)2=(1-a)2

p(ξ=1)= (1-)(1-a)2+(1-)2?a(1-a)= (1-a)

p(ξ=2)= ()2(1-a)2+(1-)a(1-a)+ (1-)2? a2=(1+2a-2 a2)

p(ξ=3)= ()2a(1-a)+ (1-) a2=

p(ξ=4)= ()2 a2=a2             

(2) ∵0<a<1,∴p(ξ=1) <p(ξ=1),p(ξ=4) <p(ξ=3)

則p(ξ=2)- p(ξ=1)= (1+2a-2 a2)- =-≥0

,即a∈[]                

(3)由(1)知ξ的數學期望為

Eξ=0×(1-a)2+1× (1-a)+2× (1+2a-2a2)+3×+4×=2a+1

29、解:(1)∵EF∥CD∥AB,EG∥PB,根據面面平行的判定定理

∴平面EFG∥平面PAB,又PA面PAB,∴AP∥平面EFG

(2)∵平面PDC⊥平面ABCD,AD⊥DC

∴AD⊥平面PCD,而BC∥AD,∴BC⊥面EFD

過C作CR⊥EF交EF延長線于R點連GR,根據三垂線定理知

∠GRC即為二面角的平面角,∵GC=CR,∴∠GRC=45°,  

故二面角G-EF-D的大小為45°。

(3)Q點為PB的中點,取PC中點M,則QM∥BC,∴QM⊥PC

在等腰Rt△PDC中,DM⊥PC,∴PC⊥面ADMQ         

30、解:(1)由已知可得,=(x+3,y),=(x-3,y),=(,0),

2()2=?,∴2(x2-9)=x2-9+y2,

即P點的軌跡方程(1-2)x2+y2=9(1-2)

當1-2>0,且≠0,即∈(-1,0)時,有+=1,

∵1-2>0,∴>0,∴x2≤9。

∴P點的軌跡是點A1,(-3,0)與點A2(3,0) 

=0時,方程為x2+y2=9,P的軌跡是點A1(-3,0)與點A2(3,0)

當1-2<0,即入∈(-∞,-1)∪(1,+∞)時,方程為-=1,P點的軌跡是雙曲線。

當1-2=0,即=±1時,方程為y=0,P點的軌跡是射線。

(2)過點A1且斜率為1的直線方程為y=x+3,

=時,曲線方程為+=1,

由(1)知,其軌跡為點A1(-3,0)與A2(3,0)

因直線過A1(-3,0),但不過A2(3,0)。

所以,點B不存在。

所以,在直線x=-9上找不到點C滿足條件。         

31、解:(理)(1)f′(x)=-+a=

(i)若a=0時,f′(x)= >0x>0,f′(x)<0x<0

∴f(x)在(0,+∞)單調遞增,在(-∞,0)單調遞減。   

(ii)若時,f′(x)≤0對x∈R恒成立。

∴f(x)在R上單調遞減。                          

(iii)若-1<a<0,由f′(x)>0ax2+2x+a>0<x<

由f′(x)<0可得x>或x<

∴f(x)在[,]單調遞增

在(-∞,],[上單調遞減。

綜上所述:若a≤-1時,f(x)在(-∞,+∞)上單調遞減。

(2)由(1)當a=-1時,f(x)在(-∞,+∞)上單調遞減。

當x∈(0,+∞)時f(x)<f(0)

∴ln(1+x2)-x<0 即ln(1+x2)<x

∴ln[(1+)(1+)……(1+)]

=ln[(1+)(1+)+…ln(1+)<++…+

=1-+-+…+=1-<1

∴(1+)(1+)……(1+)<e  

32、解:(1)由題可知:與函數互為反函數,所以,

  (2)因為點在函數的圖像上,所以, 

在上式中令可得:,又因為:,,代入可解得:.所以,,(*)式可化為:

(3)直線的方程為:,

在其中令,得,又因為在y軸上的截距為,所以,

=,結合①式可得:            ②

由①可知:當自然數時,,

兩式作差得:

結合②式得:         ③

在③中,令,結合,可解得:

又因為:當時,,所以,舍去,得

同上,在③中,依次令,可解得:,

猜想:.下用數學歸納法證明.       

(1)時,由已知條件及上述求解過程知顯然成立.

(2)假設時命題成立,即,則由③式可得:

代入上式并解方程得:

由于,所以,,所以,

符合題意,應舍去,故只有

所以,時命題也成立.

綜上可知:數列的通項公式為   

 

 


同步練習冊答案
久久精品免费一区二区视