所以.因此滿足條件的的取值范圍是. 查看更多

 

題目列表(包括答案和解析)

(2010•南京三模)在直角坐標系xOy中,橢圓
x2
9
+
y2
4
=1
的左、右焦點分別為F1、F2,點A為橢圓的左頂點,橢圓上的點P在第一象限,PF1⊥PF2,⊙O的方程為x2+y2=4
(1)求點P坐標,并判斷直線PF2與⊙O的位置關系;
(2)是否存在不同于點A的定點B,對于⊙O上任意一點M,都有
MB
MA
為常數,若存在,求所以滿足條件的點B的坐標;若不存在,說明理由.

查看答案和解析>>

若函數具有性質:①為偶函數,②對任意都有,所以則函數的解析式可以是:(只需寫出滿足條件的一個解析式即可)

 

查看答案和解析>>

((本小題共13分)

若數列滿足,數列數列,記=.

(Ⅰ)寫出一個滿足,且〉0的數列;

(Ⅱ)若,n=2000,證明:E數列是遞增數列的充要條件是=2011;

(Ⅲ)對任意給定的整數n(n≥2),是否存在首項為0的E數列,使得=0?如果存在,寫出一個滿足條件的E數列;如果不存在,說明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數列A5

(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數列A5

(Ⅱ)必要性:因為E數列A5是遞增數列,所以.所以A5是首項為12,公差為1的等差數列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數列.綜上,結論得證。

 

 

查看答案和解析>>

,則下列不等式對于一切滿足條件的恒成立的是___________(寫出所以正確命題的編號)

;②;③;④.

 

查看答案和解析>>

已知數列是首項為的等比數列,且滿足.

(1)   求常數的值和數列的通項公式;

(2)   若抽去數列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數列,試寫出數列的通項公式;

(3) 在(2)的條件下,設數列的前項和為.是否存在正整數,使得?若存在,試求所有滿足條件的正整數的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數p使得數列為等比數列,

,所以p=1

故數列為首項是2,公比為2的等比數列,即.

此時也滿足,則所求常數的值為1且

第二問中,解:由等比數列的性質得:

(i)當時,;

(ii) 當時,,

所以

第三問假設存在正整數n滿足條件,則

則(i)當時,

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视