綜上.m的取值范圍為. 查看更多

 

題目列表(包括答案和解析)

已知函數處取得極值2.

⑴ 求函數的解析式;

⑵ 若函數在區間上是單調函數,求實數m的取值范圍;

【解析】第一問中利用導數

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有,得,                …………9分

當f(x)在區間(m,2m+1)上單調遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是

 

查看答案和解析>>

已知命題p:方程表示焦點在y軸上的橢圓;命題q:雙曲線的離心率,若p、q有且只有一個為真,求m的取值范圍。

【解析】本試題主要考查了橢圓的方程,以及雙曲線的幾何性質的綜合運用,并運用命題的真假關系,來確定參數m的取值范圍。

 

查看答案和解析>>

已知命題p:方程表示焦點在y軸上的橢圓;命題q:雙曲線的離心率,若p、q有且只有一個為真,求m的取值范圍。

【解析】本試題主要考查了橢圓的方程,以及雙曲線的幾何性質的綜合運用,并運用命題的真假關系,來確定參數m的取值范圍。

 

查看答案和解析>>

已知函數其中a>0.

(I)求函數f(x)的單調區間;

(II)若函數f(x)在區間(-2,0)內恰有兩個零點,求a的取值范圍;

(III)當a=1時,設函數f(x)在區間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數g(t)在區間[-3,-1]上的最小值。

【考點定位】本小題主要考查導數的運算,利用導數研究函數的單調性、函數的零點,函數的最值等基礎知識.考查函數思想、分類討論思想.考查綜合分析和解決問題的能力.

 

查看答案和解析>>

已知函數其中a>0.
(1)求函數f(x)的單調區間;
(2)若函數f(x)在區間(-2,0)內恰有兩個零點,求a的取值范圍;
(3)當a=1時,設函數f(x)在區間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數g(t)在區間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數的運算,利用導數研究函數的單調性、函數的零點,函數的最值等基礎知識.考查函數思想、分類討論思想.考查綜合分析和解決問題的能力.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视