題目列表(包括答案和解析)
(本小題滿分為14分)定義在(-1,1)上的函數滿足:
①對任意都有
;
②在
上是單調遞增函數,
.
(1)求的值;
(2)證明為奇函數;
(3)解不等式.
(本小題滿分為14分)定義在(-1,1)上的函數滿足:
①對任意都有
;
②在
上是單調遞增函數,
.
求的值;
證明為奇函數;
解不等式.
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:
=1:2,
:
=3:2,連結AQ,BP,設它們交于點R,若
=a,
=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分12分)
某廠有一面舊墻長14米,現在準備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為
元,經過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替
得
4.
5.,
或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.
;
13.0.74 ; 14. ①、;②、圓;③.
提示:
9.
10.,
,
11.,
12.,
,
,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設抽取件產品作檢驗,則
,
,得:
,即
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得,
,原式可化為
,
而
,
故原式=.
17. 解:(1)顯然,連接
,∵
,
,
∴.由已知
,∴
,
.
∵∽
,
,
∴ 即
.
∴.
(2)
當且僅當時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴就是
與平面
所成的角.由已知得
,
,
∴,
,
.
(3) 設三棱錐的內切球半徑為
,則
∵,
,
,
,
,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當時,
∴當時,
,
∵,
,
,
.
∴ 的最大值為
或
中的最大者.
∵
∴ 當時,
有最大值為
.
19.(1)解:∵函數的圖象過原點,
∴即
,
∴.
又函數的圖象關于點
成中心對稱,
∴,
.
(2)解:由題意有 即
,
即,即
.
∴數列{}是以1為首項,1為公差的等差數列.
∴,即
. ∴
.
∴ ,
,
,
.
(3)證明:當時,
故
20. (1)解:∵,又
,
∴.
又∵
,且
∴ .
(2)解:由,
,
猜想
(3)證明:用數學歸納法證明:
①當時,
,猜想正確;
②假設時,猜想正確,即
1°若為正奇數,則
為正偶數,
為正整數,
2°若為正偶數,則
為正整數,
,又
,且
所以
即當時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|