題目列表(包括答案和解析)
(本小題滿分12分)
有編號為,
,…
的10個零件,測量其直徑(單位:cm),得到下面數據:
其中直徑在區間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==
.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,
,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(本小題滿分12分)
有編號為,
,…
的10個零件,測量其直徑(單位:cm),得到下面數據:
其中直徑在區間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==
.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,
,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(本小題滿分14分)
為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
|
喜愛打籃球 |
不喜愛打籃球 |
合計 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合計 |
|
|
50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關?說明你的理由;
(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為,求
的分布列與期望.
下面的臨界值表供參考:
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(參考公式:,其中
)
(本小題滿分12分)為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
|
喜愛打籃球 |
不喜愛打籃球 |
合計 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合計 |
|
|
50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關?說明你的理由;
(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為,求
的分布列與期望.
下面的臨界值表供參考:
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(參考公式:,其中
)
零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==
.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,
,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com