已知點為內任意一點.若.則下列結論一定成立的是A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數y=f(x)的導數y=f'(x)的導數,若方程f''(x)=0有實數解x,則稱點(x,f(x))為函數y=f(x)的“拐點”;
定義:(2)設x為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x+x)+f(x-x)=2f(x)成立,則函數y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數y=f(x)的導數y=f'(x)的導數,若方程f''(x)=0有實數解x,則稱點(x,f(x))為函數y=f(x)的“拐點”;
定義:(2)設x為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x+x)+f(x-x)=2f(x)成立,則函數y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數y=f(x)的導數y=f'(x)的導數,若方程f''(x)=0有實數解x,則稱點(x,f(x))為函數y=f(x)的“拐點”;
定義:(2)設x為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x+x)+f(x-x)=2f(x)成立,則函數y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數y=f(x)的導數y=f'(x)的導數,若方程f''(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”;
定義:(2)設x0為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數y=f(x)的圖象關于點(x0,f(x0))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

(2009•東營一模)對于三次函數f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數y=f(x)的導數y=f'(x)的導數,若方程f''(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”;
定義:(2)設x0為常數,若定義在R上的函數y=f(x)對于定義域內的一切實數x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數y=f(x)的圖象關于點(x0,f(x0))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數f(x)的“拐點”A的坐標
(2)檢驗函數f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

1、D     2、B     3、D    4、C     5、A    6、B     7、C    8、D   9、C    10、A

11、16;   12、;    13、120;    14、;    15、0或4;    16、 

17、,,

,

,得,又,或

當,即時,

 

18、(1),又,

(2)連結,交于點,,又,面面

,,是二面角的平面角,不妨設

則,,,,中,

    二面角的大小為

(3)假設棱上存在點,由題意得,要使,只要即可

當時,中,,

,時,

 

19、(1)設動點,,,,直線的方程為

  ,,點的軌跡的方程是

(2)設,,。

同理,是方程的兩個根,

           ,

 

 

20、(1)由題意得

(2)當時,,

當時,

時上式成立。

當時,

當時,

當第個月的當月利潤率

當時,是減函數,此時的最大值為

當時,

當且僅當時,即時,,又,

當時,

答:該企業經銷此產品期間,第40個月的當月利潤率最大,最大值為

 

 

 

21、(1)

(2)      ①

又                       ②

由(1)知,,……

①+②得:,

 

(3)為增函數,時,

由(1)知函數的圖象關于點對稱,記點,

所求封閉圖形的面積等于的面積,即,


同步練習冊答案
久久精品免费一区二区视