A. B. C. D. (一)必做題 查看更多

 

題目列表(包括答案和解析)

(必做題)先閱讀:如圖,設梯形ABCD的上、下底邊的長分別是a,b(a<b),高為h,求梯形的面積.
方法一:延長DA、CB交于點O,過點O作CD的垂線分別交AB、CD于E、F,則EF=h.
設OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行線MN分別交AD、BC于MN,過點A作BC的平行線AQ分別于MN、DC于PQ,則△AMP∽△ADQ.
設梯形AMNB的高為x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的問題:
已知四棱臺ABCD-A′B′C′D′的上、下底面的面積分別是S1,S2(S1<S2),棱臺的高為h,類比以上兩種方法,分別求出棱臺的體積(棱錐的體積=
1
3
×底面積×高).

查看答案和解析>>

下列命題中正確的是(   

A.若兩條直線都垂直于第三條直線,則這兩條直線一定平行;

B.若兩條直線和第三條直線成等角,則這兩條直線平行;

C.與兩條異面直線都垂直的直線,叫做異面直線的公垂線;

D.一直線與兩平行線中的一條垂直,則必與另一條也垂直.

 

查看答案和解析>>

下列命題中正確的是(   

A.若兩條直線都垂直于第三條直線,則這兩條直線一定平行;

B.若兩條直線和第三條直線成等角,則這兩條直線平行;

C.與兩條異面直線都垂直的直線,叫做異面直線的公垂線;

D.一直線與兩平行線中的一條垂直,則必與另一條也垂直.

 

查看答案和解析>>

小明做了兩道題,事件A為“做對第一個”,事件B為“做對第二個”,其中“做對第一個”與“做對第二個”的概率都是,下列說法正確的是( 。

    A.小明做對其中一個的概率為

    B.事件A與事件B為互斥事件

    C.A∩B={兩個題都做對}

    D.事件A與事件B必然要發生一個

     

查看答案和解析>>

為了解某中學生遵守《中華人民共和國交通安全法》的情況,調查部門在該校進行了如下的隨機調查,向被調查者提出兩個問題:(1)你的學號是奇數嗎?(2)在過路口時你是否闖過紅燈?要求被調查者背對著調查人員拋擲一枚硬幣,如果出現正面,就回答第一個問題,否則就回答第二個問題.被調查者不必告訴調查人員自己回答的是哪一個問題,只需回答“是”或“不是”,因為只有調查者本人知道回答了哪一個問題,所以都如實地做了回答.結果被調查的800人(學號從1至800)中有240人回答了“是”.由此可以估計這800人中闖過紅燈的人數是( 。

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設BC中點為E,連結AE、PE

      

      

       ,PB=PC

      

      

      

//

//

//

      

四邊形CHFD為平行四邊形,CH//DF

      

       又

       平面PBC

      

       ,DF平面PAD

       平面PAB

21.解:設

      

      

       對成立,

       依題有成立

       由于成立

          ①

       由于成立

         

       恒成立

          ②

       綜上由①、②得

 

 

22.解:設列車從各站出發時郵政車廂內的郵袋數構成數列

   (1)

       在第k站出發時,前面放上的郵袋

       而從第二站起,每站放下的郵袋

       故

      

       即從第k站出發時,共有郵袋

   (2)

       當n為偶數時,

       當n為奇數時,

23.解:①

       上為增函數

       ②增函數

      

      

      

      

      

       同理可證

      

      

24.解:(1)假設存在滿足題意

       則

      

       均成立

      

      

       成立

       滿足題意

   (2)

      

      

      

      

       當n=1時,

      

       成立

       假設成立

       成立

       則

      

      

      

      

      

      

      

      

      

      

       即得成立

       綜上,由數學歸納法可知

 

 

 

久久精品免费一区二区视