題目列表(包括答案和解析)
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
已知,函數
(1)當時,求函數
在點(1,
)的切線方程;
(2)求函數在[-1,1]的極值;
(3)若在上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時,
又
∴ 函數在點(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當即
時
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區間
上為增函數,則
依題意,只需,即
解得 或
(舍去)
則正實數的取值范圍是(
,
)
設點是拋物線
的焦點,
是拋物線
上的
個不同的點(
).
(1) 當時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當時,若
,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則
.”
開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為
,設
,
分別過作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
第三問中①取時,拋物線
的焦點為
,
設,
分別過
作拋物線
的準線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
解:(1)拋物線的焦點為
,設
,
分別過作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
因為,所以
,
故可取滿足條件.
(2)設,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線
的焦點為
,
設,
分別過
作拋物線
的準線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
,
則,
.
故,
,
,
是一個當
時,該逆命題的一個反例.(反例不唯一)
② 設,分別過
作
拋物線的準線
的垂線,垂足分別為
,
由及拋物線的定義得
,即
.
因為上述表達式與點的縱坐標無關,所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
,
而,所以
.
(說明:本質上只需構造滿足條件且的一組
個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標
(
)滿足
”,即:
“當時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設
,
分別過作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得,即
,則
,
又由,所以
,故命題為真.
補充條件2:“點與點
為偶數,
關于
軸對稱”,即:
“當時,若
,且點
與點
為偶數,
關于
軸對稱,則
”.此命題為真.(證略)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com