題目列表(包括答案和解析)
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
已知函數的最小值為
(Ⅰ)求
(Ⅱ)是否存在實數m,n同時滿足下列條件:
①m>n>3;
②當的定義域為[n,m]時,值域為[n2,m2]?
若存在,求出m,n的值;若不存在,說明理由.
已知函數的最小值為
(Ⅰ)求
(Ⅱ)是否存在實數m,n同時滿足下列條件:
① m>n>3;
② ②當的定義域為[n,m]時,值域為[n2,m2]?
若存在,求出m,n的值;若不存在,說明理由.
已知函數,函數
的最小值為
。
(1)求的表達式。
(2)是否存在實數m,n同時滿足以下條件:
① m>n>3;
② 當的定義域為[m,n]時,值域為
若存在,求出m,n的值;若不存在,說明理由。
一、選擇題:
1.A 2.B 3.A 4.D 5.B
6.A 7.A 8.B 9.C 10.B
二、填空題:
11.{2,3} 12. 13.1+i 14.3 15.
16.24 17.
18.
19.2 20.
21. 45 22.
23.2 24.
三、解答題:
25解:(1)原式展開得:
(2)
26解:(1)設事件為A,則在7次拋骰子中出現5次奇數,2次偶數
而拋骰子出現的奇數和偶數的概率為P是相等的,且為
根據獨立重復試驗概率公式:
(2)若
即前2次拋骰子中都是奇數或都是偶數.
若前2次都是奇數,則必須在后5次中拋出3次奇數2次偶數,
其概率:
若前2次都是偶數,則必須在后5次中拋出5次奇數,其概率:
所求事件的概率
27解:(1)由題得
設
兩式相減:
(2)
,即取
時,
.
所求的最小自然數是15
28解:(1)正方體ABCD中,∵A.N分別是AD.BC的中點,∴MN⊥AD
又∵PA⊥平面α,MNα,∴PA⊥MN,∴MN⊥平面PAD
又MN平面PAD,平面PMN⊥平面PAD
(2)由上可知:MN⊥平面PAD
∴PM⊥MN,QM⊥MN,∠PMQ是二面角P―MN―Q的平面角
PA=2,AD=2,則AM=1,PM=
PD=2,MQ=
29解:(1)拋物線的焦點是(),則雙曲線的
設雙曲線方程:
解得:
(2)聯立方程:
當
由韋達定理:
設
代入可得:
,檢驗合格
30解:(1),
(2)令,
在[-1,3]中,在此區間為增函數
時,
在此區間為減函數.
處取得極大值
[
,3]時
在此區間為增函數,
在x=3處取得極大值.
比較(-
)和
的大小得:
(無理由最大,扣3分)
即存在k=2007
(3)
而
(也可由單調性:
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com