29.已知雙曲線C的中心在原點.拋物線的焦點是雙曲線C的一個焦點.且雙曲線經過點.又知直線與雙曲線C相交于A.B兩點.(1)求雙曲線C的方程, 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C的中心在原點,拋物線y2=8x的焦點是雙曲線C的一個焦點,且雙曲線過點C(
2
,
3
).
(1)求雙曲線C的方程;
(2)設雙曲線C的左頂點為A,右焦點為F,在第一象限內任取雙曲線上一點P,試問是否存在常數λ(λ>0),使得∠PFA=λ∠PAF恒成立?并證明你的結論.

查看答案和解析>>

已知雙曲線C的中心在原點,拋物線y2=2
5
x
的焦點是雙曲線C的一個焦點,且雙曲線經過點(1,
3
)
,又知直線l:y=kx+1與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若
OA
OB
,求實數k值.

查看答案和解析>>

已知雙曲線C的中心在原點,拋物線y2=2x的焦點是雙曲線C的一個焦點,且雙曲線過點(1,),

(1)求雙曲線的方程;

(2)設直線l:y=kx+1與雙曲線C交于A、B兩點,試問:

①k為何值時;

②是否存在實數k,使A、B兩點關于直線y=mx對稱(m為常數),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.

(1)求雙曲線C的方程;

(2)若,求實數k值.

 

查看答案和解析>>

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.

(1)求雙曲線C的方程;

(2)若,求實數k值.

 

查看答案和解析>>

一、選擇題:

1.A             2.B           3.A           4.D             5.B

6.A             7.A           8.B           9.C             10.B

二、填空題:

11.{2,3}   12.   13.1+i   14.3   15.  16.24  17.  18.19.2  20.   21. 45   22.    23.2   24.

三、解答題:

25解:(1)原式展開得:

(2)

26解:(1)設事件為A,則在7次拋骰子中出現5次奇數,2次偶數

而拋骰子出現的奇數和偶數的概率為P是相等的,且為

根據獨立重復試驗概率公式:  

(2)若

即前2次拋骰子中都是奇數或都是偶數.

若前2次都是奇數,則必須在后5次中拋出3次奇數2次偶數,

其概率:

若前2次都是偶數,則必須在后5次中拋出5次奇數,其概率:

 

所求事件的概率

27解:(1)由題得

 

兩式相減:

(2)

,即取時,.

所求的最小自然數是15

28解:(1)正方體ABCD中,∵A.N分別是AD.BC的中點,∴MN⊥AD

又∵PA⊥平面α,MNα,∴PA⊥MN,∴MN⊥平面PAD

又MN平面PAD,平面PMN⊥平面PAD

(2)由上可知:MN⊥平面PAD

∴PM⊥MN,QM⊥MN,∠PMQ是二面角P―MN―Q的平面角

PA=2,AD=2,則AM=1,PM=

PD=2,MQ=

29解:(1)拋物線的焦點是(),則雙曲線的

設雙曲線方程:

解得:

(2)聯立方程:

由韋達定理:

代入可得:,檢驗合格

30解:(1)

(2)令,

在[-1,3]中,在此區間為增函數時,

在此區間為減函數.

處取得極大值

*[,3]時在此區間為增函數,在x=3處取得極大值.

比較(-)和的大小得:

(無理由最大,扣3分)

即存在k=2007

(3)

 

(也可由單調性:

 


同步練習冊答案
久久精品免费一区二区视