題目列表(包括答案和解析)
(
南開中學模擬)有以下幾個命題:A.曲線
B.若
C.設
A、B為兩個定點,m為常數,D.若橢圓的左、右焦點分別為
其中真命題的代號為
___________(按照原順序寫出所有真命題的代號).平面區域D由以A(1,3)、B(5,2)、C(3,1)為頂點的三角形內部和邊界組成,若在D上有無窮多個點(x,y)可使目標函數z=x+my(m<0)取得最大值,則m等于( )
A.-2 B.-1 C.1 D.4
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?
(II)當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當且僅當
(3)令
∴當x
> 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=
在[6,+∞]上也單調遞增.
∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
一、選擇題:(本大題共10小題,每小題5分,共50分)
1 B
A 3
文C(理C) 4
D 5
文A(理B) 6
文B(理C) 7
文C(理C) 8
文C(理A) 9
文A (理D) 10
文D(理A)
三、解答題:(本大題共6個解答題,滿分76分,)
線為y軸建立平面直角坐標系如圖所示,
則A(-4,0),N(4,0),設P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標得:
整理得:
即
所以動點P的軌跡是以點
(理)解:(I)當a=1時
或
或
或
(II)原不等式
設有
當且僅當
即時
解得
若由方程組解得
,可參考給分
(理)解:(Ⅰ)設 (a≠0),則
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無極值
∴方程
得
或
或
或
(II)原不等式
設有
當且僅當
即時
(理)解:以AN所在直線為x軸,AN的中垂
線為y軸建立平面直角坐標系如圖所示,
則A(-4,0),N(4,0),設P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標得:
整理得:
即
所以動點P的軌跡是以點
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無極值
∴方程
得
(理)解:(I)設 (1)
又故
(2)
由(1),(2)解得
(II)由向量與向量
的夾角為
得
由及A+B+C=
知A+C=
則
由0<A<得
,得
故的取值范圍是
Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+
a1=6,進而可知an+3
所以,故數列{3+an}是首相為6,公比為2的等比數列,
所以3+an=6,即an=3(
)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com