[點評]我們知道.在中.取.得,取.得.等等.這種取特殊值的方法.顯示是由一般到特殊的思維方式.事實上.本題的數列當中.隱含了子數列是等比數列.你能寫出一般的通項公式嗎? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.

(I)若,,,求方程在區間內的解集;

(II)若點是曲線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;

(III)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.【說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.】

 

查看答案和解析>>

(本小題滿分14分)在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設.
(I)若,,求方程在區間內的解集;
(II)若點是曲線上的動點.當時,設函數的值域為集合,不等式的解集為集合. 若恒成立,求實數的最大值;
(III)根據本題條件我們可以知道,函數的性質取決于變量、的值. 當時,試寫出一個條件,使得函數滿足“圖像關于點對稱,且在取得最小值”.【說明:請寫出你的分析過程.本小題將根據你對問題探究的完整性和在研究過程中所體現的思維層次,給予不同的評分.】

查看答案和解析>>

1. 構造向量,,所以,.由數量積的性質,得,即的最大值為2.

2. ∵,令,所以,當時,,當時,,所以當時,.

3.∵,∴,,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且,關于直線對稱,,關于直線對稱,∴;若,滿足條件的)存在,且,關于直線對稱,,關于直線對稱,

4. 不等式)表示的區域是如圖所示的菱形的內部,

,點到點的距離最大,此時的最大值為

,點到點的距離最大,此時的最大值為3.

5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

(1) 5 和14 為較小兩數,則另兩人需從15~20這6張中各抽1張,有種情況;

(2) 5 和14 為較大兩數,則另兩人需從1~4這4張中各抽1張,有種情況.

于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

6. ∵,∴,

,,則.

作出該不等式組表示的平面區域(圖中的陰影部分).

,則,它表示斜率為的一組平行直線,易知,當它經過點時,取得最小值.

解方程組,得,∴


同步練習冊答案
久久精品免费一区二区视