題目列表(包括答案和解析)
【解析】觀察三視圖知該三棱錐的底面為一直角三角形,右側面也是一直角三角形.故體積等于.
【答案】1
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說明理由.
【解析】第一問中取,則
;
…………1分
對等式兩邊求導,得
取,則
得到結論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當時,
;
當時,
;
猜想:當時,
運用數學歸納法證明即可。
解:⑴取,則
;
…………1分
對等式兩邊求導,得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當時,
;
當時,
;
當時,
;
…………6分
猜想:當時,
,下面用數學歸納法證明:
由上述過程可知,時結論成立,
假設當時結論成立,即
,
當時,
而
∴
即時結論也成立,
∴當時,
成立。
…………11分
綜上得,當時,
;
當時,
;
當時,
已知是公差為d的等差數列,
是公比為q的等比數列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數,且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數列
中存在某個連續p項的和式數列中
的一項,請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數
不存在
、
,使等式成立。
(2)中當時,則
即
,其中
是大于等于
的整數
反之當時,其中
是大于等于
的整數,則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)中設當
為偶數時,
式左邊為偶數,右邊為奇數,
當為偶數時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數時,
結合二項式定理得到結論。
解(1)由得
,整理后,可得
、
,
為整數
不存在
、
,使等式成立。
(2)當時,則
即
,其中
是大于等于
的整數反之當
時,其中
是大于等于
的整數,則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)設當
為偶數時,
式左邊為偶數,右邊為奇數,
當為偶數時,
式不成立。由
式得
,整理
當時,符合題意。當
,
為奇數時,
由
,得
當
為奇數時,此時,一定有
和
使上式一定成立。
當
為奇數時,命題都成立
數列,滿足
(1)求,并猜想通項公式
。
(2)用數學歸納法證明(1)中的猜想。
【解析】本試題主要考查了數列的通項公式求解,并用數學歸納法加以證明。第一問利用遞推關系式得到,
,
,
,并猜想通項公式
第二問中,用數學歸納法證明(1)中的猜想。
①對n=1,等式成立。
②假設n=k時,
成立,
那么當n=k+1時,
,所以當n=k+1時結論成立可證。
數列,滿足
(1),
,
,
并猜想通項公
。 …4分
(2)用數學歸納法證明(1)中的猜想。①對n=1,等式成立。 …5分
②假設n=k時,
成立,
那么當n=k+1時,
,
……9分
所以
所以當n=k+1時結論成立 ……11分
由①②知,猜想對一切自然數n均成立
有以下三個不等式:
;
;
.
請你觀察這三個不等式,猜想出一個一般性的結論,并證明你的結論。
【解析】根據已知條件可知歸納猜想結論為
下面給出運用綜合法的思想求解和證明。解:結論為:. …………………5分
證明:
所以
1. 構造向量,
,所以
,
.由數量積的性質
,得
,即
的最大值為2.
2. ∵,令
得
,所以
,當
時,
,當
時,
,所以當
時,
.
3.∵,∴
,
,又
,∴
,則
,所以周期
.作出
在
上的圖象知:若
,滿足條件的
(
)存在,且
,
關于直線
對稱,
,
關于直線
對稱,∴
;若
,滿足條件的
(
)存在,且
,
關于直線
對稱,
,
關于直線
對稱,
∴
.
4. 不等式(
)表示的區域是如圖所示的菱形的內部,
∵,
當,點
到點
的距離最大,此時
的最大值為
;
當,點
到點
的距離最大,此時
的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數,則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數,則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵
,∴
,
設,
,則
.
作出該不等式組表示的平面區域(圖中的陰影部分).
令,則
,它表示斜率為
的一組平行直線,易知,當它經過點
時,
取得最小值.
解方程組,得
,∴
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com