16.已知定點為坐標原點.是線段的垂直平分線上一點.若為鈍角.那么點的橫坐標的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

已知定點A(-2,0),動點B是圓F:(F為圓心)上一點,線段AB的垂直平分線交BF于P.

   (1)求動點P的軌跡E的方程;

   (2)直線交于M,N兩點,試問在曲線E位于第二象限部分上是否存在一點C,使共線(O為坐標原點)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

已知定點A(-2,0),動點B是圓F:(F為圓心)上一點,線段AB的垂直平分線交BF于P.

(1)求動點P的軌跡E的方程;

(2)直線交于M,N兩點,試問在曲線E位于第二象限部分上

是否存在一點C,使共線(O為坐標原點)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

已知定點A(4,2),O為坐標原點,P是線段 OA的垂直平分線上一點,若∠OPA為鈍角,那么點P的橫坐標的取值范圍是(    )。

查看答案和解析>>

已知定點A(4,2),O是坐標原點,P是線段OA的垂直平分線上一點,若∠OPA為鈍角,那么點P的橫坐標的取值范圍是             。

查看答案和解析>>

精英家教網已知橢圓中心在坐標原點,短軸長為2,一條準線l的方程為x=2.
(1)求橢圓方程;
(2)設O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分

題號

1

2

3

4

5

6

7

8

9

10

11

12

A

C

B

D

A

C

B

C

C

B

B

D

D

C

B

D

B

C

B

C

C

B

A

D

二、填空題:本大題共4小題,每小題5分,共20分

13.(理)2  (文)  14.(理) (文)243   15.  16.(1,2)(2,3)

三、解答題:本大題共6小題,共70分.

17.解:  ????????????????????????????????????????????????????????? (2分)

        由正弦定理得???????????????????????????????????????????? (4分)

        ??????????????????????????????????????????????????????????????? (5分)

??????????????????????????????????????????????? (6分)

???????????????????????????????????????????????????? (8分)

???????????????????????????????????????????????????????????????????????????????????????? (9分)

????????????????????????????????????????????????????????????????? (10分)

18.(理)解:????????????????????????????????????????? (2分)

            

    ??????????????????????????????????????????????????????????????????????????????????????????????????????????????? (4分)

             ????????????????????????????????????????? (6分)

??????????????????????????????????????????????????????????????????????????????????????????????? (8分)

     由此可知,,從而兩廠材料的抗拉強度指數平均水平相同,但甲廠材料相對穩定,該選甲廠的材料。??????????????????????????????????????????????????????????????????????????????????????????????? (12分)

   (文)解:記“甲第次試跳成功“為事件,“乙第次試跳成功”為事件,依題意得且相互獨立?????????????????????????????????????????????????????????????? (2分)

        (I)“甲第三次試跳才成功”為事件,且三次試跳相互獨立,

         。

         答:甲第三次試跳才成功的概率為0.063????????????????????????????????????????? (6分)

        (Ⅱ)“甲、乙兩人在第一次試跳中至少有一人成功”為事件,

         解法一:且彼此互斥,

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? (8分)

           

????????????????????????????????????????????????????????????????????????? (12分)

         解法二:

         答:甲、乙兩人在第一次試跳中至少有一人成功的概率為0.88

 

19.(I)證明:由直三棱柱性質知

    又

   

???? …………………………………(理4分文6分)

   (Ⅱ)以A為原點,分別為

    軸,建立如圖的空間直角坐標系

    直線

   

    連結易知是平面的一個法向量,

=(0,1,-1),設為平面

的一個法向量,則

令得得

設二面角的大小為,則

二面角的大小為…………………………(理8分文12分)

(Ⅲ)又

點到平面的距離………………………(理12分)

 

20.(理)解:(I)

當,即時,在上單調遞增

???????????????????????????????????? (2分)

??????????????????????????????? (4分)

?????????????????????????????????????????????????? (6分)

   (Ⅱ)令

??????????? (7分)

??????????? (10分)

??????????????????????????????????????????????????????????????????????????????????????????????????????????????? (12分)

   (文)解:(I)因為邊所在直線的方程為

 …………………………………(1分)

…………………………(4分)

   (Ⅱ)由??????????????????????????? (5分)

????????????????????????????????????????????????? (6分)

???????????????????????????? (8分)

   (Ⅲ)因為動圓過點,所以是該圓的半徑,又因為動圓與圓外切,

     所以,

     即

     故點的軌跡是以為焦點,實軸長為的雙曲線的左支。

     因為實半軸長半焦距

     所以虛半軸長

     從而動圓的圓心的軌跡方程為????????????????????????? (12分)

 

21.(理)

     解法一:(I)如圖,設把代入得

,由韋達定理得???????????????????????? (2分)

點的坐標為???????????????????????????????? (3分)

設拋物線在點處的切線的方程為

將代入上式得

(Ⅱ)

由(I)知

???????????????????? (9分)

??????????????????? (11分)

?????????????????????????????????????????????????????????????????? (12分)

解法二:(I)設

??????????????????????? (2分)

????????????????????????????????????????????????????????????????????????????????????????????????????????????? (4分)

????????????????????? (6分)

(Ⅱ)

 由(I)知

 則

          

          

???????????????????????????????????????????????????????????????????????????????????? (10分)

 

??????????????????????????????????????????????????????????????????? (12分)

(文)解:(I)

 

     

?????????????????????????????????????????????????????????? (3分)

      由于,故當時達到其最小值,即

      ??????????????????????????????????????????????????????????????????????????????? (6分)

     (Ⅱ)

      列表如下:

+

0

-

0

+

極大值

極小值

    ??????????????????????????????????????????????????????????????????????????????????????????????????????????????? (10分)

  由此可見,在區間和單調增加,在區間單調減小,

      極小值為極大值為?????????????????????????????????????????????? (12分)

22.  解:

     

     (I)????????????????????????????????????????????????? (2分)

     (Ⅱ)由(I)知

     

      ……

     

???????????????????????????????????????????? (5分)

     

????????????????????????????????????????????????????????? (8分)

     (文)(Ⅲ)

???????????????????????????????????????????????????????? (12分)

     (理)(Ⅲ)

     

     

?????????????????????????????????? (12分)

 


同步練習冊答案
久久精品免费一区二区视