題目列表(包括答案和解析)
已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,
;
當b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數b的取值范圍是
已知遞增等差數列滿足:
,且
成等比數列.
(1)求數列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數列
為單調遞減數列.
而,所以
恒成立,
故的最小值為
.
已知函數其中
為自然對數的底數,
.(Ⅰ)設
,求函數
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當時,
,
.結合表格和導數的知識判定單調性和極值,進而得到最值。
第二問中,∵,
,
∴原不等式等價于:,
即, 亦即
分離參數的思想求解參數的范圍
解:(Ⅰ)當時,
,
.
當在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時,
,
.
(Ⅱ)∵,
,
∴原不等式等價于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價于
對
恒成立,
∵對于任意的時,
(當且僅當
時取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
某投資公司年初用萬元購置了一套生產設備并即刻生產產品,已知與生產產品相關的各種配套費用第一年需要支出
萬元,第二年需要支出
萬元,第三年需要支出
萬元,……,每年都比上一年增加支出
萬元,而每年的生產收入都為
萬元.假設這套生產設備投入使用
年,
,生產成本等于生產設備購置費與這
年生產產品相關的各種配套費用的和,生產總利潤
等于這
年的生產收入與生產成本的差. 請你根據這些信息解決下列問題:
(Ⅰ)若,求
的值;
(Ⅱ)若干年后,該投資公司對這套生產設備有兩個處理方案:
方案一:當年平均生產利潤取得最大值時,以萬元的價格出售該套設備;
方案二:當生產總利潤取得最大值時,以
萬元的價格出售該套設備. 你認為哪個方案更合算?請說明理由.
某投資公司年初用萬元購置了一套生產設備并即刻生產產品,已知與生產產品相關的各種配套費用第一年需要支出
萬元,第二年需要支出
萬元,第三年需要支出
萬元,……,每年都比上一年增加支出
萬元,而每年的生產收入都為
萬元.假設這套生產設備投入使用
年,
,生產成本等于生產設備購置費與這
年生產產品相關的各種配套費用的和,生產總利潤
等于這
年的生產收入與生產成本的差. 請你根據這些信息解決下列問題:
(Ⅰ)若,求
的值;
(Ⅱ)若干年后,該投資公司對這套生產設備有兩個處理方案:
方案一:當年平均生產利潤取得最大值時,以萬元的價格出售該套設備;
方案二:當生產總利潤取得最大值時,以
萬元的價格出售該套設備. 你認為哪個方案更合算?請說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com