對.恒有.即∴ 即解得 查看更多

 

題目列表(包括答案和解析)

在數列中,,其中,對任意都有:;(1)求數列的第2項和第3項;

(2)求數列的通項公式,假設,試求數列的前項和;

(3)若對一切恒成立,求的取值范圍。

【解析】第一問中利用)同理得到

第二問中,由題意得到:

累加法得到

第三問中,利用恒成立,轉化為最小值大于等于即可。得到范圍。

(1)同理得到             ……2分 

(2)由題意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>

函數的定義域為,且滿足對于任意,有

⑴求的值;

⑵判斷的奇偶性并證明;

⑶如果,且上是增函數,求的取值范圍.

【解析】(Ⅰ) 通過賦值法,,求出f(1)0;

(Ⅱ) 說明函數f(x)的奇偶性,通過令,得.令,得,推出對于任意的x∈R,恒有f(-x)=f(x),f(x)為偶函數.

(Ⅲ) 推出函數的周期,根據函數在[-2,2]的圖象以及函數的周期性,即可求滿足f(2x-1)≥12的實數x的集合.

 

查看答案和解析>>

先閱讀下列不等式的證法,再解決后面的問題:

已知

證明:構造函數

因為對一切,恒有,所以從而得

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述問題的推廣式.

(2)對推廣的問題加以證明.

查看答案和解析>>

已知函數

(1)試求的值域;

(2)設,若對,恒 成立,試求實數的取值范圍

【解析】第一問利用

第二問中若,則,即當時,,又由(Ⅰ)知

若對,,恒有成立,即轉化得到。

解:(1)函數可化為,  ……5分

 (2) 若,則,即當時,,又由(Ⅰ)知.        …………8分

若對,,恒有成立,即,

,即的取值范圍是

 

查看答案和解析>>

,  

(1)當時,求曲線處的切線方程;

(2)如果存在,使得成立,求滿足上述條件的最大整數;

(3)如果對任意的,都有成立,求實數的取值范圍.

【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在轉化解決;(3)任意的,都有成立即恒成立,等價于恒成立

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视