解:(1)由.知.故 查看更多

 

題目列表(包括答案和解析)

解:(Ⅰ)設,其半焦距為.則

   由條件知,得

   的右準線方程為,即

   的準線方程為

   由條件知, 所以,故,

   從而,  

(Ⅱ)由題設知,設,,,

   由,得,所以

   而,由條件,得

   由(Ⅰ)得.從而,,即

   由,得.所以

   故

查看答案和解析>>

A

解析:由題意:等比數列{}有連續四項在集合{-54,-24,18,36,81}中,由等比數列的定義知,四項是兩個正數,兩個負數且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

查看答案和解析>>

A

解析:由題意:等比數列{}有連續四項在集合{-54,-24,18,36,81}中,由等比數列的定義知,四項是兩個正數,兩個負數且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

查看答案和解析>>

A

解析:由題意:等比數列{}有連續四項在集合{-54,-24,18,36,81}中,由等比數列的定義知,四項是兩個正數,兩個負數且|q|>1,故-24, 36, -54,81符合題意,則q=,6q=-9.

查看答案和解析>>

已知是等差數列,其前n項和為Sn,是等比數列,且,.

(Ⅰ)求數列的通項公式;

(Ⅱ)記,,證明).

【解析】(1)設等差數列的公差為d,等比數列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:數學歸納法)

①  當n=1時,,,故等式成立.

②  假設當n=k時等式成立,即,則當n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视