題目列表(包括答案和解析)
設,求下列各式的值:
(Ⅰ) ;
(Ⅱ)
; (Ⅲ)
.
【解析】本試題主要考查了二項式定理的運用。第一問中利用賦值的思想,令x=0,得到
第二問中,利用令x=1,得到
第三問中,利用令x=1/2,得到
解:(1)令x=0,得到;
(2)令x=1,得到
(3)令x=1/2,得到
定義,
(1)令函數的圖象為曲線C1,曲線C1與y軸交于點A(0,m),過坐標原點O作曲線C1的切線,切點為B(n,t)(n>0),設曲線C1在點A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值。
(2)當
(3)令函數的圖象為曲線C2,若存在實數b使得曲線C2在
處有斜率為-8的切線,求實數a的取值范圍。
已知點集,其中
,
,點列
在L中,
為L與y軸的交點,等差數列
的公差為1,
。
(1)求數列的通項公式;
(2)若=
,令
;試用解析式寫出
關于
的函數。
(3)若=
,給定常數m(
),是否存在
,使得
,若存在,求出
的值;若不存在,請說明理由。
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?
(II)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當且僅當
(3)令
∴當x
> 4,y′> 0,即函數y=在(4,+∞)上單調遞增,∴函數y=
在[6,+∞]上也單調遞增.
∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com