題目列表(包括答案和解析)
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設Q為AE的中點,證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
第二問中,作MNAE,垂足為N,連接DN
因為AOEO, DO
EO,EO
平面AOD,所以EO
DM
,因為AODM ,DM
平面AOE
因為MNAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因為Q為AE的中點,所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
(2)作MNAE,垂足為N,連接DN
因為AOEO, DO
EO,EO
平面AOD,所以EO
DM
,因為AODM ,DM
平面AOE
因為MNAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
二面角O-AE-D的平面角的余弦值為
設函數f(x)=lnx,g(x)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網]
(Ⅰ)求a、b的值;
(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
第二問,由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,
,有
;當
時,
,有
;當x=1時,
,有
解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,
,有
;當
時,
,有
;當x=1時,
,有
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. 、
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得
.又因為
,所以
,
于是,
,
所以,當
,且
時,
取得最大值1。
(3)對于給定的正整數t,任給數表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且
,因此,不妨設
,
且。
由得定義知,
,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com