把y=kx+3代入得: (4+3k2)x2+18kx-21=0 ----------8分 △=(18k)2+84(4+3k2)>0恒成立 ∵OA⊥OB ∴x1x2+y1y2=x1x2+(kx1+3)(kx2+3) =(1+k2)x1x2+3k(x1+x2)+9 查看更多

 

題目列表(包括答案和解析)

把函數的圖象按向量平移得到函數的圖象. 

(1)求函數的解析式; (2)若,證明:.

【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結論。第二問中,令,然后求導,利用最小值大于零得到。

(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調遞增.……10分

,即

 

查看答案和解析>>

已知直線l1:y=kx+
3
(k<0=被圓x2+y2=4截得的弦長為
13
,則l1與直線l2:y=(2+
3
)x的夾角的大小是(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>

對于解方程x2-2x-3=0的下列步驟:

①設f(x)=x2-2x-3

②計算方程的判別式Δ=22+4×3=16>0

③作f(x)的圖象

④將a=1,b=-2,c=-3代入求根公式

x=,得x1=3,x2=-1.

其中可作為解方程的算法的有效步驟為(  )

A.①②                            B.②③

C.②④                D.③④

 

查看答案和解析>>

已知直線l1:y=kx+
3
(k<0=被圓x2+y2=4截得的弦長為
13
,則l1與直線l2:y=(2+
3
)x的夾角的大小是( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视