則.設g(t)= 查看更多

 

題目列表(包括答案和解析)

設g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的單調區間;(簡單說明理由,不必嚴格證明)
(2)證明g(x)的最小值為g(
2
2
);
(3)設已知函數f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
,
π
2
],則f1(x)=-1,x∈[-
π
2
π
2
],f2(x)=sinx,x∈[-
π
2
,
π
2
],設φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

設g(x)=2x+數學公式,x∈[數學公式,4].
(1)求g(x)的單調區間;(簡單說明理由,不必嚴格證明)
(2)證明g(x)的最小值為g(數學公式);
(3)設已知函數f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值.例如:f(x)=sinx,x∈[-數學公式,數學公式],則f1(x)=-1,x∈[-數學公式,數學公式],f2(x)=sinx,x∈[-數學公式數學公式],設φ(x)=數學公式+數學公式,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

設g(x)=2x+,x∈[,4].
(1)求g(x)的單調區間;(簡單說明理由,不必嚴格證明)
(2)證明g(x)的最小值為g();
(3)設已知函數f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數f(x)在D上的最小值,max{f(x)|x∈D}表示函數f(x)在D上的最大值.例如:f(x)=sinx,x∈[-],則f1(x)=-1,x∈[-,],f2(x)=sinx,x∈[-,],設φ(x)=+,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

設函數f(x)定義域為D,若滿足①f(x)在D內是單調函數;②存在[a,b]⊆D使f(x)在[a,b]上的值域為[a,b],那么就稱y=f(x)為“成功函數”.若函數g(x)=loga(a2x+t)(a>0,a≠1)是定義域為R的“成功函數”,則t的取值范圍為( 。
A、(0,+∞)
B、(-∞,0)
C、[0,
1
4
]
D、(0,
1
4
)

查看答案和解析>>

設a,b,c為實數,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數,則下列結論不可能的是( 。
A、{S}=1且{T}=0B、{S}=1且{T}=1C、{S}=2且{T}=2D、{S}=2且{T}=3

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视