則g′(t)= t∈(0.) g(t)為減 t∈(.+∞) g(t)遞增 查看更多

 

題目列表(包括答案和解析)

對于函數y=f(x),若存在開區間D,同時滿足:①存在t∈D,當x<t時,函數f(x)單調遞減,當x>t時,函數f(x)單調遞增;②對任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),則稱y=f(x)為D內的“勾函數”.
(1)證明:函數y=|logax|(a>0,a≠1)為(0,+∞)內的“勾函數”;
(2)若D內的“勾函數”y=g(x)的導函數為y=g′(x),y=g(x)在D內有兩個零點x1,x2,求證:g′(
x1+x2
2
)
>0;
(3)對于給定常數λ,是否存在m,使函數h(x)=
1
3
λx3-
1
2
λ2x2-2λ3x+1在(m,+∞)內為“勾函數”?若存在,試求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

對于函數y=f(x),若存在開區間D,同時滿足:①存在t∈D,當x<t時,函數f(x)單調遞減,當x>t時,函數f(x)單調遞增;②對任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),則稱y=f(x)為D內的“勾函數”.
(1)證明:函數y=|logax|(a>0,a≠1)為(0,+∞)內的“勾函數”;
(2)若D內的“勾函數”y=g(x)的導函數為y=g′(x),y=g(x)在D內有兩個零點x1,x2,求證:數學公式>0;
(3)對于給定常數λ,是否存在m,使函數h(x)=數學公式λx3-數學公式λ2x2-2λ3x+1在(m,+∞)內為“勾函數”?若存在,試求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视