當m=3時.,-----------------------12分 查看更多

 

題目列表(包括答案和解析)

(12分) 如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且MD=PD.

(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;

(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

 

查看答案和解析>>

(12分) 如圖1-5,在平面直角坐標系xOy中,M、N分別是橢圓+=1的頂點,過坐標原點的直線交橢圓于P,A兩點,其中點P在第一象限,過P作x軸的垂線,垂足為C,連結AC,并延長交橢圓于點B,設直線PA的斜率為k.

(1)若直線PA平分線段MN,求k的值;

(2)當k=2時,求點P到直線AB的距離d;

(3)對任意的k>0,求證:PA⊥PB.

 

 

 

查看答案和解析>>

(12分) 如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且MD=PD.

(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

(12分)設F1F2分別為橢圓C =1(ab>0)的左、右兩個焦點.

(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

(3)已知橢圓具有性質:若MN是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPMkPN時,那么kPMkPN之積是與點P位置無關的定值.試對雙曲線寫出具有類似特性的性質,并加以證明.

圍.

查看答案和解析>>

(12分)為了提高產品的年產量,某企業擬在2010年進行技術改革。經調查測算,產品當年的產量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3-(k為常數).如果不搞技術改革,則該產品當年的產量只能是1萬件.已知2010年生產該產品的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元.由于市場行情較好,廠家生產的產品均能銷售出去。廠家將每件產品的銷售價格定為每件產品生產成本的1.5倍(生產成本包括固定投入和再投入兩部分資金).
(1)將2010年該產品的利潤y萬元(利潤=銷售金額-生產成本-技術改革費用)表示為技術改革費用m萬元的函數;
(2)該企業2010年的技術改革費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视