ξ=100的概率P=, 查看更多

 

題目列表(包括答案和解析)

設事件A發生的概率為P,若在A發生的條件下B發生的概率為P′,則由A產生B的概率為PP′,根據這一規律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現正面則棋子向前跳動一站,出現反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結束.已知硬幣出現正反面的概率都為
12

(1)求P1,P2,P3,并根據棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設an=Pn-Pn-1(1≤n≤100),求證:數列{an}是等比數列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設事件A發生的概率為P,若在A發生的條件下B發生的概率為P′,則由A產生B的概率為PP′,根據這一規律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現正面則棋子向前跳動一站,出現反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結束.已知硬幣出現正反面的概率都為數學公式
(1)求P1,P2,P3,并根據棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設an=Pn-Pn-1(1≤n≤100),求證:數列{an}是等比數列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設事件A發生的概率為P,若在A發生的條件下B發生的概率為P′,則由A產生B的概率為PP′,根據這一規律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現正面則棋子向前跳動一站,出現反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結束.已知硬幣出現正反面的概率都為
1
2

(1)求P1,P2,P3,并根據棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1
(2)設an=Pn-Pn-1(1≤n≤100),求證:數列{an}是等比數列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設事件A發生的概率為P,若在A發生的條件下B發生的概率為P′,則由A產生B的概率為PP′,根據這一規律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現正面則棋子向前跳動一站,出現反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結束.已知硬幣出現正反面的概率都為
(1)求P1,P2,P3,并根據棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設an=Pn-Pn-1(1≤n≤100),求證:數列{an}是等比數列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設一次試驗成功的概率為p,進行100次獨立重復試驗,當p=
 
時,成功次數的標準差的值最大,其最大值為
 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视