題目列表(包括答案和解析)
(本小題滿分12分)二次函數的圖象經過三點
.
(1)求函數的解析式(2)求函數
在區間
上的最大值和最小值
(本小題滿分12分)已知等比數列{an}中,
(Ⅰ)求數列{an}的通項公式an;
(Ⅱ)設數列{an}的前n項和為Sn,證明:;
(本小題滿分12分)已知函數,其中a為常數.
(Ⅰ)若當恒成立,求a的取值范圍;
(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.(本小題滿分12分)已知是橢圓
的兩個焦點,O為坐標原點,點
在橢圓上,且
,圓O是以
為直徑的圓,直線
與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、選擇題(每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
A
B
B
C
C
D
D
D
A
A
二、填空題(每小題5分,共20分)
13. 14.
15. 1 16.
三、簡答題
17.解:依題記“甲答對一題”為事件A ;“乙答對一題”為事件B
2分
則
∴ξ的分布列:
ξ
0
1
2
P
8分
∴
10分
18.解:當時,原式
3分
當時,有
∴原式=
7分
當時,
∴原式 11分
綜上所述:
12分
19.解:設切點(),
3分
∵切線與直線平行
∴
或
10分
∴切點坐標(1,-8)(-1,-12)
∴切線方程:或
即:或
12分
21.解:設底面一邊長為,則另一邊長
∴高為 3分
由:
∴
∵體積
6分
令得
或
(舍去)
∵只有一個極值點
∴,此時高
11分
答:高為
12分
22.解:假設存在
當時,由
即:
∴
當時,
∴
猜想:
證明:1. 當時,已證
2. 假設時結論成立
即為時結論也成立
由(1)(2)可知,對大于1的自然數n,存在,使
成立 12分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com