12.已知直線是橢圓的右準線.如果在直線上存在一點M.使得線段OM的垂直平分線過右焦點.則橢圓的離心率的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準線上的射影為H,P為拋物線上一動點.
(1)當|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O、F為焦點,且過點A,求橢圓E的方程及右準線方程;
(3)設是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.

查看答案和解析>>

已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準線上的射影為H,P為拋物線上一動點.

(1)當|AP|+|PF|取最小值時,求;

 

(2)如果一橢圓E以O、F為焦點,且過點A,求橢圓E的方程及右準線方程;

(3)設是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個

不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請

說明理由.

 

查看答案和解析>>

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為數學公式,右頂點為D(2,0),設點數學公式
(Ⅰ)求該橢圓的標準方程;
(Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為,右頂點為D(2,0),設點
(Ⅰ)求該橢圓的標準方程;
(Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準線上的射影為H,P為拋物線上一動點.
(1)當|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O、F為焦點,且過點A,求橢圓E的方程及右準線方程;
(3)設是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

2,4,6

13.    14.7   15.2    16.

17.17.解:(1)  --------------------2分

 --------------------4分

--------------------6分

.--------------------8分

時(9分),取最大值.--------------------10分

(2)當時,,即,--------------------11分

解得,.-------------------- 12分

18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

解法二  “有放回摸取”可看作獨立重復實驗∵每次摸出一球得白球的概率為

∴“有放回摸兩次,顏色不同”的概率為

(2)設摸得白球的個數為,依題意得

19.方法一

 

   (2)

20.解:(1)

  ∵ x≥1. ∴ ,-----------------------------------------------------2分

   (當x=1時,取最小值).

  ∴ a<3(a=3時也符合題意). ∴ a≤3.------------------------------------4分

  (2),即27-6a+3=0, ∴ a=5,.------------6分

,或 (舍去) --------------------------8分

時,; 當時,

  即當時,有極小值.又    ---------10分

   ∴ fx)在,上的最小值是,最大值是. ----------12分

21.解:(Ⅰ)∵,∴,

∵數列{}的各項均為正數,∴,

,

),所以數列{}是以2為公比的等比數列.………………3分

的等差中項,

,∴

∴數列{}的通項公式.……………………………………………………6分

   (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

,

      1

   ②

②-1得,

=……………………………10分

要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

∴使S>50成立的正整數n的最小值為5. ……………………………12分

22.解:(Ⅰ)由已知得

 

              …………4分

  (Ⅱ)設P點坐標為(x,y)(x>0),由

        

                       …………5分    

         ∴   消去m,n可得

             ,又因     8分 

        ∴ P點的軌跡方程為  

        它表示以坐標原點為中心,焦點在軸上,且實軸長為2,焦距為4的雙曲線

的右支             …………9分

(Ⅲ)設直線l的方程為,將其代入C的方程得

        

        即                          

 易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

        又     

       設,則

       ∵  l與C的兩個交點軸的右側

          

       ∴ ,即     

又由  同理可得       …………11分

        由

       

     ∴

   由

           

  由

           

消去

解之得: ,滿足                …………13分

故所求直線l存在,其方程為:  …………14分

 

 

久久精品免费一区二区视