解 ∵n=k時命題成立n=k+1時命題成立, 查看更多

 

題目列表(包括答案和解析)

設函數
(1)求函數y=T(x2)和y=(T(x))2的解析式;
(2)是否存在實數a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,請說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當時,求y=T4(x)的解析式;
已知下面正確的命題:當時(i∈N*,1≤i≤15),都有恒成立.
②若方程T4(x)=kx恰有15個不同的實數根,確定k的取值;并求這15個不同的實數根的和.

查看答案和解析>>

設函數
(1)求函數y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非負實數a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,請說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當x∈[0,]時,求y=Tn(x)的解析式;
已知下面正確的命題:當x∈[,](i∈N*,1≤i≤2n-1)時,都有Tn(x)=Tn-x)恒成立.
②對于給定的正整數m,若方程Tm(x)=kx恰有2m個不同的實數根,確定k的取值范圍;若將這些根從小到大排列組成數列{xn}(1≤n≤2m),求數列{xn}所有2m項的和.

查看答案和解析>>

設函數數學公式
(1)求函數y=T(sin(數學公式x))和y=sin(數學公式T(x))的解析式;
(2)是否存在非負實數a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,請說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當x∈[0,數學公式]時,求y=Tn(x)的解析式;
已知下面正確的命題:當x∈[數學公式數學公式](i∈N*,1≤i≤2n-1)時,都有Tn(x)=Tn數學公式-x)恒成立.
②對于給定的正整數m,若方程Tm(x)=kx恰有2m個不同的實數根,確定k的取值范圍;若將這些根從小到大排列組成數列{xn}(1≤n≤2m),求數列{xn}所有2m項的和.

查看答案和解析>>

設函數T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函數y=T(x2)和y=(T(x))2的解析式;
(2)是否存在實數a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,請說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當x∈[ 0 ,
1
16
 ]
時,求y=T4(x)的解析式;
已知下面正確的命題:當x∈[ 
i-1
16
 ,
i+1
16
 ]
時(i∈N*,1≤i≤15),都有T4(x)=T4(
i
8
-x)
恒成立.
②若方程T4(x)=kx恰有15個不同的實數根,確定k的取值;并求這15個不同的實數根的和.

查看答案和解析>>

(2012•浦東新區一模)設函數T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函數y=T(x2)和y=(T(x))2的解析式;
(2)是否存在實數a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,請說明理由;
(3)定義Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①當x∈[ 0 ,
1
16
 ]
時,求y=T4(x)的解析式;
已知下面正確的命題:當x∈[ 
i-1
16
 ,
i+1
16
 ]
時(i∈N*,1≤i≤15),都有T4(x)=T4(
i
8
-x)
恒成立.
②若方程T4(x)=kx恰有15個不同的實數根,確定k的取值;并求這15個不同的實數根的和.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视